Results 1  10
of
88
Multidimensional Access Methods
, 1998
"... Search operations in databases require special support at the physical level. This is true for conventional databases as well as spatial databases, where typical search operations include the point query (find all objects that contain a given search point) and the region query (find all objects that ..."
Abstract

Cited by 561 (3 self)
 Add to MetaCart
Search operations in databases require special support at the physical level. This is true for conventional databases as well as spatial databases, where typical search operations include the point query (find all objects that contain a given search point) and the region query (find all objects that overlap a given search region). More
On Indexing Mobile Objects
, 1999
"... We show how to index mobile objects in one and two dimensions using efficient dynamic external memory data structures. The problem is motivated by real life applications in traffic monitoring, intelligent navigation and mobile communications domains. For the 1dimensional case, we give (i) a dynamic ..."
Abstract

Cited by 200 (14 self)
 Add to MetaCart
We show how to index mobile objects in one and two dimensions using efficient dynamic external memory data structures. The problem is motivated by real life applications in traffic monitoring, intelligent navigation and mobile communications domains. For the 1dimensional case, we give (i) a dynamic, external memory algorithm with guaranteed worst case performance and linear space and (ii) a practical approximation algorithm also in the dynamic, external memory setting, which has linear space and expected logarithmic query time. We also give an algorithm with guaranteed logarithmic query time for a restricted version of the problem. We present extensions of our techniques to two dimensions. In addition we give a lower bound on the number of I/O's needed to answer the ddimensional problem. Initial experimental results and comparisons to traditional indexing approaches are also included. 1 Introduction Traditional database management systems assume that data stored in the database rem...
Indexing moving points
, 2003
"... We propose three indexing schemes for storing a set S of N points in the plane, each moving along a linear trajectory, so that any query of the following form can be answered quickly: Given a rectangle R and a real value t; report all K points of S that lie inside R at time t: We first present an in ..."
Abstract

Cited by 168 (13 self)
 Add to MetaCart
We propose three indexing schemes for storing a set S of N points in the plane, each moving along a linear trajectory, so that any query of the following form can be answered quickly: Given a rectangle R and a real value t; report all K points of S that lie inside R at time t: We first present an indexing structure that, for any given constant e> 0; uses OðN=BÞ disk blocks and answers a query in OððN=BÞ 1=2þe þ K=BÞ I/Os, where B is the block size. It can also report all the points of S that lie inside R during a given time interval. A point can be inserted or deleted, or the trajectory of a point can be changed, in Oðlog 2 B NÞ I/Os. Next, we present a general approach that improves the query time if the queries arrive in chronological order, by allowing the index to evolve over time. We obtain a tradeoff between the query time and the number of times the index needs to be updated as the points move. We also describe an indexing scheme in which the number of I/Os required to answer a query depends monotonically on the difference between the query time stamp t and the current time. Finally, we develop an efficient indexing scheme to answer approximate
An asymptotically optimal multiversion Btree
, 1996
"... In a variety of applications, we need to keep track of the development of a data set over time. For maintaining and querying these multiversion data efficiently, external storage structures are an absolute necessity. We propose a multiversion Btree that supports insertions and deletions of data ite ..."
Abstract

Cited by 162 (8 self)
 Add to MetaCart
In a variety of applications, we need to keep track of the development of a data set over time. For maintaining and querying these multiversion data efficiently, external storage structures are an absolute necessity. We propose a multiversion Btree that supports insertions and deletions of data items at the current version and range queries and exact match queries for any version, current or past. Our multiversion Btree is asymptotically optimal in the sense that the time and space bounds are asymptotically the same as those of the (singleversion) Btree in the worst case. The technique we present for transforming a (singleversion) Btree into a multiversion Btree is quite general: it applies to a number of hierarchical external access structures with certain properties directly, and it can be modified for others.
ExternalMemory Computational Geometry
, 1993
"... In this paper, we give new techniques for designing efficient algorithms for computational geometry problems that are too large to be solved in internal memory, and we use these techniques to develop optimal and practical algorithms for a number of important largescale problems. We discuss our algor ..."
Abstract

Cited by 121 (20 self)
 Add to MetaCart
In this paper, we give new techniques for designing efficient algorithms for computational geometry problems that are too large to be solved in internal memory, and we use these techniques to develop optimal and practical algorithms for a number of important largescale problems. We discuss our algorithms primarily in the contex't of single processor/single disk machines, a domain in which they are not only the first known optimal results but also of tremendous practical value. Our methods also produce the first known optimal algorithms for a wide range of twolevel and hierarchical muir{level memory models, including parallel models. The algorithms are optimal both in terms of I/0 cost and internal computation.
Temporal Query Languages: a Survey
, 1995
"... We define formal notions of temporal domain and temporal database, and use them to survey a wide spectrum of temporal query languages. We distinguish between an abstract temporal database and its concrete representations, and accordingly between abstract and concrete temporal query languages. We als ..."
Abstract

Cited by 108 (11 self)
 Add to MetaCart
We define formal notions of temporal domain and temporal database, and use them to survey a wide spectrum of temporal query languages. We distinguish between an abstract temporal database and its concrete representations, and accordingly between abstract and concrete temporal query languages. We also address the issue of incomplete temporal information. 1 Introduction A temporal database is a repository of temporal information. A temporal query language is any query language for temporal databases. In this paper we propose a formal notion of temporal database and use this notion in surveying a wide spectrum of temporal query languages. The need to store temporal information arises in many computer applications. Consider, for example, records of various kinds: financial [37], personnel, medical [98], or judicial. Also, monitoring data, e.g., in telecommunications network management [4] or process control, has often a temporal dimension. There has been a lot of research in temporal dat...
Efficient Indexing Methods for Probabilistic Threshold Queries over Uncertain Data
 Proc. 30th Int’l Conf. Very Large Data Bases (VLDB
, 2004
"... It is infeasible for a sensor database to contain the exact value of each sensor at all points in time. This uncertainty is inherent in these systems due to measurement and sampling errors, and resource limitations. In order to avoid drawing erroneous conclusions based upon stale data, the use of un ..."
Abstract

Cited by 105 (20 self)
 Add to MetaCart
It is infeasible for a sensor database to contain the exact value of each sensor at all points in time. This uncertainty is inherent in these systems due to measurement and sampling errors, and resource limitations. In order to avoid drawing erroneous conclusions based upon stale data, the use of uncertainty intervals that model each data item as a range and associated probability density function (pdf) rather than a single value has recently been proposed. Querying these uncertain data introduces imprecision into answers, in the form of probability values that specify the likeliness the answer satisfies the query. These queries are more expensive to evaluate than their traditional counterparts but are guaranteed to be correct and more informative due to the probabilities accompanying the answers. Although the answer probabilities are useful, for many applications, it is only necessary to know whether the probability exceeds a given threshold – we term these Probabilistic Threshold Queries (PTQ). In this paper we address the efficient computation of these types of queries. In particular, we develop two index structures and associated algorithms to efficiently answer PTQs. The first index scheme is based on the idea of augmenting uncertainty information to an Rtree. We establish the difficulty
On Similarity Queries for TimeSeries Data: Constraint Specification and Implementation
, 1995
"... Constraints are a natural mechanism for the specification of similarity queries on timeseries data. However, to realize the expressive power of constraint programming in this context, one must provide the matching implementation technology for efficient indexing of very large data sets. In this pap ..."
Abstract

Cited by 100 (4 self)
 Add to MetaCart
Constraints are a natural mechanism for the specification of similarity queries on timeseries data. However, to realize the expressive power of constraint programming in this context, one must provide the matching implementation technology for efficient indexing of very large data sets. In this paper, we formalize the intuitive notions of exact and approximate similarity between timeseries patterns and data. Our definition of similarity extends the distance metric used in [2, 7] with invariance under a group of transformations. Our main observation is that the resulting, more expressive, set of constraint queries can be supported by a new indexing technique, which preserves all the desirable properties of the indexing scheme proposed in [2, 7].
Optimal Dynamic Interval Management in External Memory (Extended Abstract))
 IN PROC. IEEE SYMP. ON FOUNDATIONS OF COMP. SCI
, 1996
"... We present a space and I/Ooptimal externalmemory data structure for answering stabbing queries on a set of dynamically maintained intervals. Our data structure settles an open problem in databases and I/O algorithms by providing the first optimal externalmemory solution to the dynamic interval m ..."
Abstract

Cited by 85 (23 self)
 Add to MetaCart
We present a space and I/Ooptimal externalmemory data structure for answering stabbing queries on a set of dynamically maintained intervals. Our data structure settles an open problem in databases and I/O algorithms by providing the first optimal externalmemory solution to the dynamic interval management problem, which is a special case of 2dimensional range searching and a central problem for objectoriented and temporal databases and for constraint logic programming. Our data structure simultaneously uses optimal linear space (that is, O(N/B) blocks of disk space) and achieves the optimal O(log B N + T/B) I/O query bound and O(log B N ) I/O update bound, where B is the I/O block size and T the number of elements in the answer to a query. Our structure is also the first optimal external data structure for a 2dimensional range searching problem that has worstcase as opposed to amortized update bounds. Part of the data structure uses a novel balancing technique for efficient worstcase manipulation of balanced trees, which is of independent interest.