Results 1  10
of
107
ECC, an Extended Calculus of Constructions
, 1989
"... We present a higherorder calculus ECC which can be seen as an extension of the calculus of constructions [CH88] by adding strong sum types and a fully cumulative type hierarchy. ECC turns out to be rather expressive so that mathematical theories can be abstractly described and abstract mathematics ..."
Abstract

Cited by 84 (4 self)
 Add to MetaCart
We present a higherorder calculus ECC which can be seen as an extension of the calculus of constructions [CH88] by adding strong sum types and a fully cumulative type hierarchy. ECC turns out to be rather expressive so that mathematical theories can be abstractly described and abstract mathematics may be adequately formalized. It is shown that ECC is strongly normalizing and has other nice prooftheoretic properties. An !\GammaSet (realizability) model is described to show how the essential properties of the calculus can be captured settheoretically.
Infinite Objects in Type Theory
"... . We show that infinite objects can be constructively understood without the consideration of partial elements, or greatest fixedpoints, through the explicit consideration of proof objects. We present then a proof system based on these explanations. According to this analysis, the proof expressions ..."
Abstract

Cited by 83 (2 self)
 Add to MetaCart
. We show that infinite objects can be constructively understood without the consideration of partial elements, or greatest fixedpoints, through the explicit consideration of proof objects. We present then a proof system based on these explanations. According to this analysis, the proof expressions should have the same structure as the program expressions of a pure functional lazy language: variable, constructor, application, abstraction, case expressions, and local let expressions. 1 Introduction The usual explanation of infinite objects relies on the use of greatest fixedpoints of monotone operators, whose existence is justified by the impredicative proof of Tarski's fixed point theorem. The proof theory of such infinite objects, based on the so called coinduction principle, originally due to David Park [21] and explained with this name for instance in the paper [18], reflects this explanation. Constructively, to rely on such impredicative methods is somewhat unsatisfactory (see fo...
System F with type equality coercions
, 2007
"... We introduce System FC, which extends System F with support for nonsyntactic type equality. There are two main extensions: (i) explicit witnesses for type equalities, and (ii) open, nonparametric type functions, given meaning by toplevel equality axioms. Unlike System F, FC is expressive enough to ..."
Abstract

Cited by 75 (25 self)
 Add to MetaCart
We introduce System FC, which extends System F with support for nonsyntactic type equality. There are two main extensions: (i) explicit witnesses for type equalities, and (ii) open, nonparametric type functions, given meaning by toplevel equality axioms. Unlike System F, FC is expressive enough to serve as a target for several different sourcelanguage features, including Haskell’s newtype, generalised algebraic data types, associated types, functional dependencies, and perhaps more besides.
Dependently Typed Functional Programs and their Proofs
, 1999
"... Research in dependent type theories [ML71a] has, in the past, concentrated on its use in the presentation of theorems and theoremproving. This thesis is concerned mainly with the exploitation of the computational aspects of type theory for programming, in a context where the properties of programs ..."
Abstract

Cited by 70 (13 self)
 Add to MetaCart
Research in dependent type theories [ML71a] has, in the past, concentrated on its use in the presentation of theorems and theoremproving. This thesis is concerned mainly with the exploitation of the computational aspects of type theory for programming, in a context where the properties of programs may readily be specified and established. In particular, it develops technology for programming with dependent inductive families of datatypes and proving those programs correct. It demonstrates the considerable advantage to be gained by indexing data structures with pertinent characteristic information whose soundness is ensured by typechecking, rather than human effort. Type theory traditionally presents safe and terminating computation on inductive datatypes by means of elimination rules which serve as induction principles and, via their associated reduction behaviour, recursion operators [Dyb91]. In the programming language arena, these appear somewhat cumbersome and give rise to unappealing code, complicated by the inevitable interaction between case analysis on dependent types and equational reasoning on their indices which must appear explicitly in the terms. Thierry Coquand’s proposal [Coq92] to equip type theory directly with the kind of
A Dependently Typed Assembly Language
, 2001
"... We present a dependently typed assembly language (DTAL) in which the type system supports the use of a restricted form of dependent types, reaping some benefits of dependent types at assembly level. DTAL overcomes several significant limitations in recently proposed lowlevel languages including Jav ..."
Abstract

Cited by 68 (10 self)
 Add to MetaCart
We present a dependently typed assembly language (DTAL) in which the type system supports the use of a restricted form of dependent types, reaping some benefits of dependent types at assembly level. DTAL overcomes several significant limitations in recently proposed lowlevel languages including Java bytecode language and a typed assembly language, which prevent them from handling certain important compiler optimizations such as runtime array bound check elimination. We also mention a compiler which can generate DTAL code from compiling some highlevel programs. 1
Natural Deduction as HigherOrder Resolution
 Journal of Logic Programming
, 1986
"... An interactive theorem prover, Isabelle, is under development. In LCF, each inference rule is represented by one function for forwards proof and another (a tactic) for backwards proof. In Isabelle, each inference rule is represented by a Horn clause. ..."
Abstract

Cited by 54 (8 self)
 Add to MetaCart
An interactive theorem prover, Isabelle, is under development. In LCF, each inference rule is represented by one function for forwards proof and another (a tactic) for backwards proof. In Isabelle, each inference rule is represented by a Horn clause.
The Nuprl Open Logical Environment
, 2000
"... The Nuprl system is a framework for reasoning about mathematics and programming. Over the years its design has been substantially improved to meet the demands of largescale applications. Nuprl LPE, the newest release, features an open, distributed architecture centered around a flexible knowled ..."
Abstract

Cited by 44 (16 self)
 Add to MetaCart
The Nuprl system is a framework for reasoning about mathematics and programming. Over the years its design has been substantially improved to meet the demands of largescale applications. Nuprl LPE, the newest release, features an open, distributed architecture centered around a flexible knowledge base and supports the cooperation of independent formal tools. This paper gives a brief overview of the system and the objectives that are addressed by its new architecture.
Set Theory for Verification: II  Induction and Recursion
 Journal of Automated Reasoning
, 2000
"... A theory of recursive definitions has been mechanized in Isabelle's ZermeloFraenkel (ZF) set theory. The objective is to support the formalization of particular recursive definitions for use in verification, semantics proofs and other computational reasoning. ..."
Abstract

Cited by 43 (21 self)
 Add to MetaCart
A theory of recursive definitions has been mechanized in Isabelle's ZermeloFraenkel (ZF) set theory. The objective is to support the formalization of particular recursive definitions for use in verification, semantics proofs and other computational reasoning.