Results 11  20
of
101
Algebraic Operations and Generic Effects
 Applied Categorical Structures
, 2003
"... Given a complete and cocomplete symmetric monoidal closed category V and a symmetric monoidal Vcategory C with cotensors and a strong Vmonad T on C, we investigate axioms under which an ObCindexed family of operations of the form α_x : (Tx)^ν → (Tx)^ω provides semantics for al ..."
Abstract

Cited by 33 (7 self)
 Add to MetaCart
Given a complete and cocomplete symmetric monoidal closed category V and a symmetric monoidal Vcategory C with cotensors and a strong Vmonad T on C, we investigate axioms under which an ObCindexed family of operations of the form α_x : (Tx)^ν → (Tx)^ω provides semantics for algebraic operations on the computational λcalculus. We recall a definition for which we have elsewhere given adequacy results, and we show that an enrichment of it is equivalent to a range of other possible natural definitions of algebraic operation. In particular, we define the notion of generic effect and show that to give a generic effect is equivalent to giving an algebraic operation. We further show how the usual monadic semantics of the computational λcalculus extends uniformly to incorporate generic effects. We outline examples and nonexamples and we show that our definition also enriches one for callbyname languages with e#ects.
An Extension Result for Continuous Valuations
, 1998
"... We show, by a simple and direct proof, that if a bounded valuation on a directed complete partial order (dcpo) is the supremum of a directed family of simple valuations then it has a unique extension to a measure on the Borel oealgebra of the dcpo with the Scott topology. It follows that every boun ..."
Abstract

Cited by 32 (4 self)
 Add to MetaCart
We show, by a simple and direct proof, that if a bounded valuation on a directed complete partial order (dcpo) is the supremum of a directed family of simple valuations then it has a unique extension to a measure on the Borel oealgebra of the dcpo with the Scott topology. It follows that every bounded and continuous valuation on a continuous domain can be extended uniquely to a Borel measure. The result also holds for oefinite valuations, but fails for dcpo's in general. 1
Power domains and iterated function systems
 Information and Computation
, 1996
"... We introduce the notion of weakly hyperbolic iterated function system (IFS) on a compact metric space, which generalises that of hyperbolic IFS. Based on a domaintheoretic model, which uses the Plotkin power domain and the probabilistic power domain respectively, we prove the existence and uniquene ..."
Abstract

Cited by 30 (10 self)
 Add to MetaCart
We introduce the notion of weakly hyperbolic iterated function system (IFS) on a compact metric space, which generalises that of hyperbolic IFS. Based on a domaintheoretic model, which uses the Plotkin power domain and the probabilistic power domain respectively, we prove the existence and uniqueness of the attractor of a weakly hyperbolic IFS and the invariant measure of a weakly hyperbolic IFS with probabilities, extending the classic results of Hutchinson for hyperbolic IFSs in this more general setting. We also present finite algorithms to obtain discrete and digitised approximations to the attractor and the invariant measure, extending the corresponding algorithms for hyperbolic IFSs. We then prove the existence and uniqueness of the invariant distribution of a weakly hyperbolic recurrent IFS and obtain an algorithm to generate the invariant distribution on the digitised screen. The generalised Riemann integral is used to provide a formula for the expected value of almost everywhere continuous functions with respect to this distribution. For hyperbolic recurrent IFSs and Lipschitz maps, one can estimate the integral up to any threshold of accuracy.] 1996 Academic Press, Inc. 1.
Adequacy for algebraic effects
 In 4th FoSSaCS
, 2001
"... We present a logic for algebraic effects, based on the algebraic representation of computational effects by operations and equations. We begin with the acalculus, a minimal calculus which separates values, effects, and computations and thereby canonises the order of evaluation. This is extended to ..."
Abstract

Cited by 30 (16 self)
 Add to MetaCart
We present a logic for algebraic effects, based on the algebraic representation of computational effects by operations and equations. We begin with the acalculus, a minimal calculus which separates values, effects, and computations and thereby canonises the order of evaluation. This is extended to obtain the logic, which is a classical firstorder multisorted logic with higherorder value and computation types, as in Levy’s callbypushvalue, a principle of induction over computations, a free algebra principle, and predicate fixed points. This logic embraces Moggi’s computational λcalculus, and also, via definable modalities, HennessyMilner logic, and evaluation logic, though Hoare logic presents difficulties. 1
An Operational Semantics for Probabilistic Concurrent Constraint Programming
, 1998
"... This paper investigates a probabilistic version of the concurrent constraint programming paradigm (CCP). The aim is to introduce the possibility to formulate so called "randomised algorithms" within the CCP framework. Differently from common approaches in (imperative) highlevel programming language ..."
Abstract

Cited by 30 (12 self)
 Add to MetaCart
This paper investigates a probabilistic version of the concurrent constraint programming paradigm (CCP). The aim is to introduce the possibility to formulate so called "randomised algorithms" within the CCP framework. Differently from common approaches in (imperative) highlevel programming languages, which rely on some kind of random() function, we introduce randomness in the very definition of the language by means of a probabilistic choice construct. This allows a program to make stochastic moves during its execution. We call the resulting language Probabilistic Concurrent Constraint Programming (PCCP). We present an operational semantics for PCCP by means of a probabilistic transition system such that the execution of a PCCP program may be seen as a stochastic process, i.e. as a random walk on the transition graph. The transition probabilities are given explicitly. This semantics captures a notion of observables which combines results of computations and the probability of those re...
Abstract interpretation of probabilistic semantics
 In Seventh International Static Analysis Symposium (SAS’00), number 1824 in Lecture Notes in Computer Science
, 2000
"... Abstract. Following earlier models, we lift standard deterministic and nondeterministic semantics of imperative programs to probabilistic semantics. This semantics allows for random external inputs of known or unknown probability and random number generators. We then propose a method of analysis of ..."
Abstract

Cited by 30 (5 self)
 Add to MetaCart
Abstract. Following earlier models, we lift standard deterministic and nondeterministic semantics of imperative programs to probabilistic semantics. This semantics allows for random external inputs of known or unknown probability and random number generators. We then propose a method of analysis of programs according to this semantics, in the general framework of abstract interpretation. This method lifts an “ordinary ” abstract lattice, for nonprobabilistic programs, to one suitable for probabilistic programs. Our construction is highly generic. We discuss the influence of certain parameters on the precision of the analysis, basing ourselves on experimental results. 1
Combining effects: sum and tensor
"... We seek a unified account of modularity for computational effects. We begin by reformulating Moggi’s monadic paradigm for modelling computational effects using the notion of enriched Lawvere theory, together with its relationship with strong monads; this emphasises the importance of the operations ..."
Abstract

Cited by 30 (4 self)
 Add to MetaCart
We seek a unified account of modularity for computational effects. We begin by reformulating Moggi’s monadic paradigm for modelling computational effects using the notion of enriched Lawvere theory, together with its relationship with strong monads; this emphasises the importance of the operations that produce the effects. Effects qua theories are then combined by appropriate bifunctors on the category of theories. We give a theory for the sum of computational effects, which in particular yields Moggi’s exceptions monad transformer and an interactive input/output monad transformer. We further give a theory of the commutative combination of effects, their tensor, which yields Moggi’s sideeffects monad transformer. Finally we give a theory of operation transformers, for redefining operations when adding new effects; we derive explicit forms for the operation transformers associated to the above monad transformers.
Computational Effects and Operations: An Overview
, 2004
"... We overview a programme to provide a unified semantics for computational effects based upon the notion of a countable enriched Lawvere theory. We define the notion of countable enriched Lawvere theory, show how the various leading examples of computational effects, except for continuations, give ris ..."
Abstract

Cited by 26 (8 self)
 Add to MetaCart
We overview a programme to provide a unified semantics for computational effects based upon the notion of a countable enriched Lawvere theory. We define the notion of countable enriched Lawvere theory, show how the various leading examples of computational effects, except for continuations, give rise to them, and we compare the definition with that of a strong monad. We outline how one may use the notion to model three natural ways in which to combine computational effects: by their sum, by their commutative combination, and by distributivity. We also outline a unified account of operational semantics. We present results we have already shown, some partial results, and our plans for further development of the programme.
A probabilistic language based upon sampling functions
 In Conference Record of the 32nd Annual ACM Symposium on Principles of Programming Languages
, 2005
"... As probabilistic computations play an increasing role in solving various problems, researchers have designed probabilistic languages which treat probability distributions as primitive datatypes. Most probabilistic languages, however, focus only on discrete distributions and have limited expressive p ..."
Abstract

Cited by 26 (1 self)
 Add to MetaCart
As probabilistic computations play an increasing role in solving various problems, researchers have designed probabilistic languages which treat probability distributions as primitive datatypes. Most probabilistic languages, however, focus only on discrete distributions and have limited expressive power. This paper presents a probabilistic language, called λ○, whose expressive power is beyond discrete distributions. Rich expressiveness of λ ○ is due to its use of sampling functions, i.e., mappings from the unit interval (0.0, 1.0] to probability domains, in specifying probability distributions. As such, λ ○ enables programmers to formally express and reason about sampling methods developed in simulation theory. The use of λ ○ is demonstrated with three applications in robotics: robot localization, people tracking, and robotic mapping. All experiments have been carried out with real robots.