Results 1  10
of
100
PROBABILISTIC PREDICATE TRANSFORMERS
, 1995
"... Predicate transformers facilitate reasoning about imperative programs, including those exhibiting demonic nondeterministic choice. Probabilistic predicate transformers extend that facility to programs containing probabilistic choice, so that one can in principle determine not only whether a program ..."
Abstract

Cited by 107 (32 self)
 Add to MetaCart
Predicate transformers facilitate reasoning about imperative programs, including those exhibiting demonic nondeterministic choice. Probabilistic predicate transformers extend that facility to programs containing probabilistic choice, so that one can in principle determine not only whether a program is guaranteed to establish a certain result, but also its probability of doing so. We bring together independent work of Claire Jones and Jifeng He, showing how their constructions can be made to correspond ï¿½ from that link between a predicatebased and a relationbased view of probabilistic execution we are able to propose `probabilistic healthiness conditions', generalising those of Dijkstra for ordinary predicate transformers. The associated calculus seems suitable for exploring further the rigorous derivation of imperative probabilistic programs.
Bisimulation for Probabilistic Transition Systems: A Coalgebraic Approach
, 1998
"... . The notion of bisimulation as proposed by Larsen and Skou for discrete probabilistic transition systems is shown to coincide with a coalgebraic definition in the sense of Aczel and Mendler in terms of a set functor. This coalgebraic formulation makes it possible to generalize the concepts to a ..."
Abstract

Cited by 74 (15 self)
 Add to MetaCart
. The notion of bisimulation as proposed by Larsen and Skou for discrete probabilistic transition systems is shown to coincide with a coalgebraic definition in the sense of Aczel and Mendler in terms of a set functor. This coalgebraic formulation makes it possible to generalize the concepts to a continuous setting involving Borel probability measures. Under reasonable conditions, generalized probabilistic bisimilarity can be characterized categorically. Application of the final coalgebra paradigm then yields an internally fully abstract semantical domain with respect to probabilistic bisimulation. Keywords. Bisimulation, probabilistic transition system, coalgebra, ultrametric space, Borel measure, final coalgebra. 1 Introduction For discrete probabilistic transition systems the notion of probabilistic bisimilarity of Larsen and Skou [LS91] is regarded as the basic process equivalence. The definition was given for reactive systems. However, Van Glabbeek, Smolka and Steffen s...
Dynamical systems, Measures and Fractals via Domain Theory
 Information and Computation
, 1995
"... We introduce domain theory in dynamical systems, iterated function systems (fractals) and measure theory. For a discrete dynamical system given by the action of a continuous map f:X X on a metric space X, we study the extended dynamical systems (l/X,l/f), (UX, U f) and (LX, Lf) where 1/, U and L ar ..."
Abstract

Cited by 68 (19 self)
 Add to MetaCart
We introduce domain theory in dynamical systems, iterated function systems (fractals) and measure theory. For a discrete dynamical system given by the action of a continuous map f:X X on a metric space X, we study the extended dynamical systems (l/X,l/f), (UX, U f) and (LX, Lf) where 1/, U and L are respectively the Vietoris hyperspace, the upper hyperspace and the lower hyperspace functors. We show that if (X, f) is chaotic, then so is (UX, U f). When X is locally compact UX, is a continuous bounded complete dcpo. If X is second countable as well, then UX will be omegacontinuous and can be given an effective structure. We show how strange attractors, attractors of iterated function systems (fractals) and Julia sets are obtained effectively as fixed points of deterministic functions on UX or fixed points of nondeterministic functions on CUX where C is the convex (Plotkin) power domain. We also show that the set, M(X), of finite Borel measures on X can be embedded in PUX, where P is the probabilistic power domain. This provides an effective framework for measure theory. We then prove that the invariant measure of an hyperbolic iterated function system with probabilities can be obtained as the unique fixed point of an associated continuous function on PUX.
Domain Theory and Integration
 Theoretical Computer Science
, 1995
"... We present a domaintheoretic framework for measure theory and integration of bounded realvalued functions with respect to bounded Borel measures on compact metric spaces. The set of normalised Borel measures of the metric space can be embedded into the maximal elements of the normalised probabilis ..."
Abstract

Cited by 57 (12 self)
 Add to MetaCart
We present a domaintheoretic framework for measure theory and integration of bounded realvalued functions with respect to bounded Borel measures on compact metric spaces. The set of normalised Borel measures of the metric space can be embedded into the maximal elements of the normalised probabilistic power domain of its upper space. Any bounded Borel measure on the compact metric space can then be obtained as the least upper bound of an !chain of linear combinations of point valuations (simple valuations) on the upper space, thus providing a constructive setup for these measures. We use this setting to define a new notion of integral of a bounded realvalued function with respect to a bounded Borel measure on a compact metric space. By using an !chain of simple valuations, whose lub is the given Borel measure, we can then obtain increasingly better approximations to the value of the integral, similar to the way the Riemann integral is obtained in calculus by using step functions. ...
Notions of Computation Determine Monads
 Proc. FOSSACS 2002, Lecture Notes in Computer Science 2303
, 2002
"... We give semantics for notions of computation, also called computational effects, by means of operations and equations. We show that these generate several of the monads of primary interest that have been used to model computational effects, with the striking omission of the continuations monad, demo ..."
Abstract

Cited by 55 (7 self)
 Add to MetaCart
We give semantics for notions of computation, also called computational effects, by means of operations and equations. We show that these generate several of the monads of primary interest that have been used to model computational effects, with the striking omission of the continuations monad, demonstrating the latter to be of a different character, as is computationally true. We focus on semantics for global and local state, showing that taking operations and equations as primitive yields a mathematical relationship that reflects their computational relationship.
Domains for Computation in Mathematics, Physics and Exact Real Arithmetic
 Bulletin of Symbolic Logic
, 1997
"... We present a survey of the recent applications of continuous domains for providing simple computational models for classical spaces in mathematics including the real line, countably based locally compact spaces, complete separable metric spaces, separable Banach spaces and spaces of probability dist ..."
Abstract

Cited by 48 (10 self)
 Add to MetaCart
We present a survey of the recent applications of continuous domains for providing simple computational models for classical spaces in mathematics including the real line, countably based locally compact spaces, complete separable metric spaces, separable Banach spaces and spaces of probability distributions. It is shown how these models have a logical and effective presentation and how they are used to give a computational framework in several areas in mathematics and physics. These include fractal geometry, where new results on existence and uniqueness of attractors and invariant distributions have been obtained, measure and integration theory, where a generalization of the Riemann theory of integration has been developed, and real arithmetic, where a feasible setting for exact computer arithmetic has been formulated. We give a number of algorithms for computation in the theory of iterated function systems with applications in statistical physics and in period doubling route to chao...
A Computational Model for Metric Spaces
 Theoretical Computer Science
, 1995
"... For every metric space X , we define a continuous poset BX such that X is homeomorphic to the set of maximal elements of BX with the relative Scott topology. The poset BX is a dcpo iff X is complete, and !continuous iff X is separable. The computational model BX is used to give domaintheoretic pro ..."
Abstract

Cited by 42 (8 self)
 Add to MetaCart
For every metric space X , we define a continuous poset BX such that X is homeomorphic to the set of maximal elements of BX with the relative Scott topology. The poset BX is a dcpo iff X is complete, and !continuous iff X is separable. The computational model BX is used to give domaintheoretic proofs of Banach's fixed point theorem and of two classical results of Hutchinson: on a complete metric space, every hyperbolic iterated function system has a unique nonempty compact attractor, and every iterated function system with probabilities has a unique invariant measure with bounded support. We also show that the probabilistic power domain of BX provides an !continuous computational model for measure theory on a separable complete metric space X . 1 Introduction In this paper, we establish new connections between the theory of metric spaces and domain theory, the two basic mathematical structures in computer science. For every metric space X, we define a continuous poset (not necessar...
The troublesome probabilistic powerdomain
 Proceedings of the Third Workshop on Computation and Approximation
, 1998
"... In [12] it is shown that the probabilistic powerdomain of a continuous domain is again continuous. The category of continuous domains, however, is not cartesian closed, and one has to look at subcategories such as RB, the retracts of bifinite domains. [8] offers a proof that the probabilistic powerd ..."
Abstract

Cited by 40 (5 self)
 Add to MetaCart
In [12] it is shown that the probabilistic powerdomain of a continuous domain is again continuous. The category of continuous domains, however, is not cartesian closed, and one has to look at subcategories such as RB, the retracts of bifinite domains. [8] offers a proof that the probabilistic powerdomain construction can be restricted to RB. Inthispaper, wegiveacounterexampletoGrahamâ€™sproofanddescribe our own attempts at proving a closure result for the probabilistic powerdomain construction. We have positive results for finite trees and finite reversed trees. These illustrate the difficulties we face, rather than being a satisfying answer to the question of whether the probabilistic powerdomain and function spaces can be reconciled. We are more successful with coherent or Lawsoncompact domains. These form a category with many pleasing properties but they fall short of supporting function spaces. Along the way, we give a new proof of Jones â€™ Splitting Lemma. 1
A Hierarchy of Probabilistic System Types
, 2003
"... We study various notions of probabilistic bisimulation from a coalgebraic point of view, accumulating in a hierarchy of probabilistic system types. In general, a natural transformation between two Setfunctors straightforwardly gives rise to a transformation of coalgebras for the respective functors ..."
Abstract

Cited by 37 (6 self)
 Add to MetaCart
We study various notions of probabilistic bisimulation from a coalgebraic point of view, accumulating in a hierarchy of probabilistic system types. In general, a natural transformation between two Setfunctors straightforwardly gives rise to a transformation of coalgebras for the respective functors. This latter transformation preserves homomorphisms and thus bisimulations. For comparison of probabilistic system types we also need reflection of bisimulation. We build the hierarchy of probabilistic systems by exploiting the new result that the transformation also reflects bisimulation in case the natural transformation is componentwise injective and the first functor preserves weak pullbacks. Additionally, we illustrate the correspondence of concrete and coalgebraic bisimulation in the case of general Segalatype systems.
Refinementoriented probability for CSP
, 1995
"... Jones and Plotkin give a general construction for forming a probabilistic powerdomain over any directedcomplete partial order [Jon90, JP89]. We apply their technique to the failures/divergences semantic model for Communicating Sequential Processes [Hoa85]. The resulting probabilistic model supports ..."
Abstract

Cited by 35 (5 self)
 Add to MetaCart
Jones and Plotkin give a general construction for forming a probabilistic powerdomain over any directedcomplete partial order [Jon90, JP89]. We apply their technique to the failures/divergences semantic model for Communicating Sequential Processes [Hoa85]. The resulting probabilistic model supports a new binary operator, probabilistic choice, and retains all operators of CSP including its two existing forms of choice. An advantage of using the general construction is that it is easy to see which CSP identities remain true in the probabilistic model. A surprising consequence however is that probabilistic choice distributes through all other operators; such algebraic mobility means that the syntactic position of the choice operator gives little information about when the choice actually must occur. That in turn leads to some interesting interaction between probability and nondeterminism. A simple communications protocol is used to illustrate the probabilistic algebra, and several sugg...