Results 1 
8 of
8
Fast Fourier transforms for nonequispaced data: A tutorial
, 2000
"... In this section, we consider approximative methods for the fast computation of multivariate discrete Fourier transforms for nonequispaced data (NDFT) in the time domain and in the frequency domain. In particular, we are interested in the approximation error as function of the arithmetic complexity o ..."
Abstract

Cited by 112 (32 self)
 Add to MetaCart
In this section, we consider approximative methods for the fast computation of multivariate discrete Fourier transforms for nonequispaced data (NDFT) in the time domain and in the frequency domain. In particular, we are interested in the approximation error as function of the arithmetic complexity of the algorithm. We discuss the robustness of NDFTalgorithms with respect to roundoff errors and apply NDFTalgorithms for the fast computation of Bessel transforms.
Nonuniform fast Fourier transform
 Geophysics
, 1999
"... The nonuniform discrete Fourier transform (NDFT) can be computed with a fast algorithm, referred to as the nonuniform fast Fourier transform (NFFT). In L dimensions, the NFFT requires O(N(ln #) L + ( Q L #=1 M # ) P L #=1 log M # ) operations, where M # is the number of Fourier components ..."
Abstract

Cited by 44 (1 self)
 Add to MetaCart
The nonuniform discrete Fourier transform (NDFT) can be computed with a fast algorithm, referred to as the nonuniform fast Fourier transform (NFFT). In L dimensions, the NFFT requires O(N(ln #) L + ( Q L #=1 M # ) P L #=1 log M # ) operations, where M # is the number of Fourier components along dimension #, N is the number of irregularly spaced samples, and # is the required accuracy. This is a dramatic improvement over the O(N Q L #=1 M # ) operations required for the direct evaluation (NDFT). The performance of the NFFT depends on the lowpass filter used in the algorithm. A truncated Gauss pulse, proposed in the literature, is optimized. A newly proposed filter, a Gauss pulse tapered with a Hanning window, performs better than the truncated Gauss pulse and the Bspline, also proposed in the literature. For small filter length, a numerically optimized filter shows the best results. Numerical experiments for 1D and 2D implementations confirm the theoretically predicted ...
Using NFFT 3  a software library for various nonequispaced fast Fourier transforms
, 2008
"... NFFT 3 is a software library that implements the nonequispaced fast Fourier transform (NFFT) and a number of related algorithms, e.g. nonequispaced fast Fourier transforms on the sphere and iterative schemes for inversion. This is to provide a survey on the mathematical concepts behind the NFFT and ..."
Abstract

Cited by 12 (8 self)
 Add to MetaCart
NFFT 3 is a software library that implements the nonequispaced fast Fourier transform (NFFT) and a number of related algorithms, e.g. nonequispaced fast Fourier transforms on the sphere and iterative schemes for inversion. This is to provide a survey on the mathematical concepts behind the NFFT and its variants, as well as a general guideline for using the library. Numerical examples for a number of applications are given.
New Fourier reconstruction algorithms for computerized tomography
"... In this paper, we propose two new algorithms for high quality Fourier reconstructions of digital N × N images from their Radon transform. Both algorithms are based on fast Fourier transforms for nonequispaced data (NFFT) and require only O(N²log N) arithmetic operations. While the rst alg ..."
Abstract

Cited by 7 (3 self)
 Add to MetaCart
In this paper, we propose two new algorithms for high quality Fourier reconstructions of digital N × N images from their Radon transform. Both algorithms are based on fast Fourier transforms for nonequispaced data (NFFT) and require only O(N²log N) arithmetic operations. While the rst algorithm includes a bivariate NFFT on the polar grid, the second algorithm consists of several univariate NFFTs on the socalled linogram.
Numerical stability of fast trigonometric transforms  a worst case study
 J. Concrete Appl. Math
, 2003
"... This paper presents some new results on numerical stability for various fast trigonometric transforms. In a worst case study, we consider the numerical stability of the classical fast Fourier transform (FFT) with respect to different precomputation methods for the involved twiddle factors and show t ..."
Abstract

Cited by 4 (2 self)
 Add to MetaCart
This paper presents some new results on numerical stability for various fast trigonometric transforms. In a worst case study, we consider the numerical stability of the classical fast Fourier transform (FFT) with respect to different precomputation methods for the involved twiddle factors and show the strong influence of precomputation errors on the numerical stability of the FFT. The examinations are extended to fast algorithms for the computation of discrete cosine and sine transforms and to efficient computations of discrete Fourier transforms for nonequispaced data. Numerical tests confirm the theoretical estimates of numerical stability.