Results 1 
2 of
2
Representations, Hierarchies, and Graphs of Institutions
, 1996
"... For the specification of abstract data types, quite a number of logical systems have been developed. In this work, we will try to give an overview over this variety. As a prerequisite, we first study notions of {\em representation} and embedding between logical systems, which are formalized as {\em ..."
Abstract

Cited by 5 (4 self)
 Add to MetaCart
For the specification of abstract data types, quite a number of logical systems have been developed. In this work, we will try to give an overview over this variety. As a prerequisite, we first study notions of {\em representation} and embedding between logical systems, which are formalized as {\em institutions} here. Different kinds of representations will lead to a looser or tighter connection of the institutions, with more or less good possibilities of faithfully embedding the semantics and of reusing proof support. In the second part, we then perform a detailed ``empirical'' study of the relations among various wellknown institutions of total, ordersorted and partial algebras and firstorder structures (all with Horn style, i.e.\ universally quantified conditional, axioms). We thus obtain a {\em graph} of institutions, with different kinds of edges according to the different kinds of representations between institutions studied in the first part. We also prove some separation results, leading to a {\em hierarchy} of institutions, which in turn naturally leads to five subgraphs of the above graph of institutions. They correspond to five different levels of expressiveness in the hierarchy, which can be characterized by different kinds of conditional generation principles. We introduce a systematic notation for institutions of total, ordersorted and partial algebras and firstorder structures. The notation closely follows the combination of features that are present in the respective institution. This raises the question whether these combinations of features can be made mathematically precise in some way. In the third part, we therefore study the combination of institutions with the help of socalled parchments (which are certain algebraic presentations of institutions) and parchment morphisms. The present book is a revised version of the author's thesis, where a number of mathematical problems (pointed out by Andrzej Tarlecki) and a number of misuses of the English language (pointed out by Bernd KriegBr\"uckner) have been corrected. Also, the syntax of specifications has been adopted to that of the recently developed Common Algebraic Specification Language {\sc Casl} \cite{CASL/Summary,Mosses97TAPSOFT}.
An institutional view on categorical logic and the CurryHowardTaitisomorphism
"... We introduce a generic notion of propositional categorical logic and provide a construction of an institution with proofs out of such a logic, following the CurryHowardTait paradigm. We then prove logicindependent soundness and completeness theorems. The framework is instantiated with a number ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
We introduce a generic notion of propositional categorical logic and provide a construction of an institution with proofs out of such a logic, following the CurryHowardTait paradigm. We then prove logicindependent soundness and completeness theorems. The framework is instantiated with a number of examples: classical, intuitionistic, linear and modal propositional logics. Finally, we speculate how this framework may be extended beyond the propositional case.