Results 1 
3 of
3
Higher Type Recursion, Ramification and Polynomial Time
 Annals of Pure and Applied Logic
, 1999
"... It is shown how to restrict recursion on notation in all finite types so as to characterize the polynomial time computable functions. The restrictions are obtained by enriching the type structure with the formation of types !oe, and by adding linear concepts to the lambda calculus. 1 Introduction ..."
Abstract

Cited by 22 (3 self)
 Add to MetaCart
It is shown how to restrict recursion on notation in all finite types so as to characterize the polynomial time computable functions. The restrictions are obtained by enriching the type structure with the formation of types !oe, and by adding linear concepts to the lambda calculus. 1 Introduction Recursion in all finite types was introduced by Hilbert [9] and later became known as the essential part of Godel's system T [8]. This system has long been viewed as a powerful scheme unsuitable for describing small complexity classes such as polynomial time. Simmons [16] showed that ramification can be used to characterize the primitive recursive functions by higher type recursion, and Leivant and Marion [14] showed that another form of ramification can be used to restrict higher type recursion to PSPACE. However, to characterize the much smaller class of polynomialtime computable functions by higher type recursion, it seems that an additional principle is required. By introducing linear...
Ranking primitive recursions: The low grzegorczyk classes revisited
 SIAM Journal of Computing
, 1998
"... Abstract. Traditional results in subrecursion theory are integrated with the recent work in “predicative recursion ” by defining a simple ranking ρ of all primitive recursive functions. The hierarchy defined by this ranking coincides with the Grzegorczyk hierarchy at and above the linearspace level. ..."
Abstract

Cited by 10 (1 self)
 Add to MetaCart
Abstract. Traditional results in subrecursion theory are integrated with the recent work in “predicative recursion ” by defining a simple ranking ρ of all primitive recursive functions. The hierarchy defined by this ranking coincides with the Grzegorczyk hierarchy at and above the linearspace level. Thus, the result is like an extension of the Schwichtenberg/Müller theorems. When primitive recursion is replaced by recursion on notation, the same series of classes is obtained except with the polynomial time computable functions at the first level.