Results 1 
3 of
3
Type Analysis and Data Structure Selection
, 1991
"... Schwartz et al. described an optimization to implement builtin abstract types such as sets and maps with efficient data structures. Their transformation rests on the discovery of finite universal sets, called bases, to be used for avoiding data replication and for creating aggregate data structures ..."
Abstract

Cited by 15 (0 self)
 Add to MetaCart
Schwartz et al. described an optimization to implement builtin abstract types such as sets and maps with efficient data structures. Their transformation rests on the discovery of finite universal sets, called bases, to be used for avoiding data replication and for creating aggregate data structures that implement associative access by simpler cursor or pointer access. The SETL implementation used global analysis similar to classical dataflow for typings and for set inclusion and membership relationships to determine bases. However, the optimized data structures selected by this optmization did not include a primitive linked list or array, and all optimized data structures retained some degree of hashing. Hence, this heuristic approach did not guarantee a uniform improvement in performance over the use of default representations. The analysis was complicated by SETL's imperative style, weak typing, and low level control structures. The implemented optimizer was large (about 20,000 line...
RealTime Deques, Multihead Turing Machines, and Purely Functional Programming
 In Conference on Functional Programming Languages and Computer Architecture
, 1993
"... We answer the following question: Can a deque (double ended queue) be implemented in a purely functional language such that each push or pop operation on either end of a queue is accomplished in O(1) time in the worst case? The answer is yes, thus solving a problem posted by Gajewska and Tarjan [1 ..."
Abstract

Cited by 12 (1 self)
 Add to MetaCart
We answer the following question: Can a deque (double ended queue) be implemented in a purely functional language such that each push or pop operation on either end of a queue is accomplished in O(1) time in the worst case? The answer is yes, thus solving a problem posted by Gajewska and Tarjan [14] and by Ponder, McGeer, and Ng [25], and refining results of Sarnak [26] and Hoogerwoord [18]. We term such a deque realtime, since its constant worstcase behavior might be useful in real time programs (assuming realtime garbage collection [3], etc.) Furthermore, we show that no restriction of the functional language is necessary, and that push and pop operations on previous versions of a deque can also be achieved in constant time. We present a purely functional implementation of real time deques and its complexity analysis. We then show that the implementation has some interesting implications, and can be used to give a realtime simulation of a multihead Turing machine in a purel...
Fully Persistent Arrays for Efficient Incremental Updates and Voluminous Reads
 4th European Symposium on Programming
, 1992
"... The array update problem in a purely functional language is the following: once an array is updated, both the original array and the newly updated one must be preserved to maintain referential transparency. We devise a very simple, fully persistent data structure to tackle this problem such that ..."
Abstract

Cited by 5 (2 self)
 Add to MetaCart
The array update problem in a purely functional language is the following: once an array is updated, both the original array and the newly updated one must be preserved to maintain referential transparency. We devise a very simple, fully persistent data structure to tackle this problem such that ffl each incremental update costs O(1) worstcase time, ffl a voluminous sequence of r reads cost in total O(r) amortized time, and ffl the data structure use O(n + u) space, where n is the size of the array and u is the total number of updates. A sequence of r reads is voluminous if r is \Omega\Gamma n) and the sequence of arrays being read forms a path of length O(r) in the version tree. A voluminous sequence of reads may be mixed with updates without affecting either the performance of reads or updates. An immediate consequence of the above result is that if a functional program is singlethreaded, then the data structure provides a simple and efficient implementation of funct...