Results 1 
5 of
5
Equations and rewrite rules: a survey
 In Formal Language Theory: Perspectives and Open Problems
, 1980
"... bY ..."
Le Fun: Logic, equations, and Functions
 In Proc. 4th IEEE Internat. Symposium on Logic Programming
, 1987
"... Abstract † We introduce a new paradigm for the integration of functional and logic programming. Unlike most current research, our approach is not based on extending unification to generalpurpose equation solving. Rather, we propose a computation delaying mechanism called residuation. This allows a ..."
Abstract

Cited by 44 (1 self)
 Add to MetaCart
Abstract † We introduce a new paradigm for the integration of functional and logic programming. Unlike most current research, our approach is not based on extending unification to generalpurpose equation solving. Rather, we propose a computation delaying mechanism called residuation. This allows a clear distinction between functional evaluation and logical deduction. The former is based on the λcalculus, and the latter on Horn clause resolution. In clear contrast with equationsolving approaches, our model supports higherorder function evaluation and efficient compilation of both functional and logic programming expressions, without being plagued by nondeterministic termrewriting. In addition, residuation lends itself naturally to process synchronization and constrained search. Besides unification (equations), other residuations may be any grounddecidable goal, such as mutual exclusion (inequations), and comparisons (inequalities). We describe an implementation of the residuation paradigm as a prototype language called Le Fun—Logic, equations, and Functions.
Type inference and semiunification
 In Proceedings of the ACM Conference on LISP and Functional Programming (LFP ) (Snowbird
, 1988
"... In the last ten years declarationfree programming languages with a polymorphic typing discipline (ML, B) have been developed to approximate the flexibility and conciseness of dynamically typed languages (LISP, SETL) while retaining the safety and execution efficiency of conventional statically type ..."
Abstract

Cited by 25 (6 self)
 Add to MetaCart
In the last ten years declarationfree programming languages with a polymorphic typing discipline (ML, B) have been developed to approximate the flexibility and conciseness of dynamically typed languages (LISP, SETL) while retaining the safety and execution efficiency of conventional statically typed languages (Algol68, Pascal). These polymorphic languages can be type checked at compile time, yet allow functions whose arguments range over a variety of types. We investigate several polymorphic type systems, the most powerful of which, termed MilnerMycroft Calculus, extends the socalled letpolymorphism found in, e.g., ML with a polymorphic typing rule for recursive definitions. We show that semiunification, the problem of solving inequalities over firstorder terms, characterizes type checking in the MilnerMycroft Calculus to polynomial time, even in the restricted case where nested definitions are disallowed. This permits us to extend some infeasibility results for related combinatorial problems to type inference and to correct several claims and statements in the literature. We prove the existence of unique most general solutions of term inequalities, called most general semiunifiers, and present an algorithm for computing them that terminates for all known inputs due to a novel “extended occurs check”. We conjecture this algorithm to be
Parallelizing Functional Programs by Generalization
 Journal of Functional Programming
, 1997
"... List homomorphisms are functions that are parallelizable using the divideandconquer paradigm. We study the problem of finding a homomorphic representation of a given function, based on the BirdMeertens theory of lists. A previous work proved that to each pair of leftward and rightward sequential ..."
Abstract

Cited by 8 (1 self)
 Add to MetaCart
List homomorphisms are functions that are parallelizable using the divideandconquer paradigm. We study the problem of finding a homomorphic representation of a given function, based on the BirdMeertens theory of lists. A previous work proved that to each pair of leftward and rightward sequential representations of a function, based on cons and snoclists, respectively, there is also a representation as a homomorphism. Our contribution is a mechanizable method to extract the homomorphism representation from a pair of sequential representations. The method is decomposed to a generalization problem and an inductive claim, both solvable by term rewriting techniques. To solve the former we present a sound generalization procedure which yields the required representation, and terminates under reasonable assumptions. We illustrate the method and the procedure by the parallelization of the scanfunction (parallel prefix). The inductive claim is provable automatically.
Parallelizing Functional Programs by Term Rewriting
, 1997
"... List homomorphisms are functions that can be computed in parallel using the divideandconquer paradigm. We study the problem of finding a homomorphic representation of a given function, based on the BirdMeertens theory of lists. A previous work proved that to each pair of leftward and rightward se ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
List homomorphisms are functions that can be computed in parallel using the divideandconquer paradigm. We study the problem of finding a homomorphic representation of a given function, based on the BirdMeertens theory of lists. A previous work proved that to each pair of leftward and rightward sequential representations of a function, based on cons and snoclists, respectively, there is also a representation as a homomorphism. Our contribution is a mechanizable method to extract the homomorphism representation from a pair of sequential representations. The method is decomposed to a generalization problem and an inductive claim, both solvable by term rewriting techniques. To solve the former we present a sound generalization procedure which yields the required representation, and terminates under reasonable assumptions. We illustrate the method and the procedure by the parallelization of the scanfunction (parallel prefix). The inductive claim is provable automatically. Keywords: P...