Results 1 
1 of
1
A Linear Algorithm for Analysis of Minimum Spanning and Shortest Path Trees of Planar Graphs
 Algorithmica
, 1992
"... We give a linear time and space algorithm for analyzing trees in planar graphs. The algorithm can be used to analyze the sensitivity of a minimum spanning tree to changes in edge costs, to find its replacement edges, and to verify its minimality. It can also be used to analyze the sensitivity of a s ..."
Abstract

Cited by 16 (0 self)
 Add to MetaCart
We give a linear time and space algorithm for analyzing trees in planar graphs. The algorithm can be used to analyze the sensitivity of a minimum spanning tree to changes in edge costs, to find its replacement edges, and to verify its minimality. It can also be used to analyze the sensitivity of a singlesource shortest path tree to changes in edge costs, and to analyze the sensitivity of a minimum cost network flow. The algorithm is simple and practical. It uses the properties of a planar embedding, combined with a heapordered queue data structure. Let G = (V; E) be a planar graph, either directed or undirected, with n vertices and m = O(n) edges. Each edge e 2 E has a realvalued cost cost(e). A minimum spanning tree of a connected, undirected planar graph G is a spanning tree of minimum total edge cost. If G is directed and r is a vertex from which all other vertices are reachable, then a shortest path tree from r is a spanning tree that contains a minimumcost path from r to every...