Results 1 
2 of
2
Architecture Independent Massive Parallelization of DivideandConquer Algorithms
 Mathematics of Program Construction, Lecture Notes in Computer Science 947
, 1995
"... . We present a strategy to develop, in a functional setting, correct, efficient and portable DivideandConquer (DC) programs for massively parallel architectures. Starting from an operational DC program, mapping sequences to sequences, we apply a set of semantics preserving transformation rules, wh ..."
Abstract

Cited by 9 (1 self)
 Add to MetaCart
. We present a strategy to develop, in a functional setting, correct, efficient and portable DivideandConquer (DC) programs for massively parallel architectures. Starting from an operational DC program, mapping sequences to sequences, we apply a set of semantics preserving transformation rules, which transform the parallel control structure of DC into a sequential control flow, thereby making the implicit data parallelism in a DC scheme explicit. In the next phase of our strategy, the parallel architecture is fully expressed, where `architecture dependent' higherorder functions are introduced. Then  due to the rising communication complexities on particular architectures  topology dependent communication patterns are optimized in order to reduce the overall communication costs. The advantages of this approach are manifold and are demonstrated with a set of nontrivial examples. 1 Introduction It is wellknown that the main problems in exploiting the power of modern parallel sys...
Transformational Derivation of (parallel) Programs Using Skeletons
 Katholieke Universiteit Nijmegen
"... We describe a framework for the derivation of programs for arbitrary (in particular, parallel) architectures, motivated by a generalization of the derivation process for sequential algorithms. The central concept in this approach is that of a skeleton: on the one hand, a higherorder function for ta ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
We describe a framework for the derivation of programs for arbitrary (in particular, parallel) architectures, motivated by a generalization of the derivation process for sequential algorithms. The central concept in this approach is that of a skeleton: on the one hand, a higherorder function for targeting transformational derivations at, on the other hand representing an elementary computation on the architecture aimed at. Skeletons thus form a basis for intermediate languages, that can be implemented once and for all, as a process separate from individual program developments. The available knowledge on the derivation of (higherorder) functional programs can be used for deriving parallel ones. This paper presents an overview of the method, illustrated with an example (trapezoidal rule on SIMD processor array), and ideas for future research. 1 Introduction and overview The introduction of various computer networks and parallel computers in recent years has led to a large increase in...