Results 1 
3 of
3
Efficient generation of shared RSA keys
 Advances in Cryptology  CRYPTO 97
, 1997
"... We describe efficient techniques for a number of parties to jointly generate an RSA key. At the end of the protocol an RSA modulus N = pq is publicly known. None of the parties know the factorization of N. In addition a public encryption exponent is publicly known and each party holds a share of the ..."
Abstract

Cited by 124 (4 self)
 Add to MetaCart
We describe efficient techniques for a number of parties to jointly generate an RSA key. At the end of the protocol an RSA modulus N = pq is publicly known. None of the parties know the factorization of N. In addition a public encryption exponent is publicly known and each party holds a share of the private exponent that enables threshold decryption. Our protocols are efficient in computation and communication. All results are presented in the honest but curious settings (passive adversary).
Generating a Product of Three Primes with an Unknown Factorization
 Proc. 3rd Algorithmic Number Theory Symposium (ANTSIII
, 1998
"... We describe protocols for three or more parties to jointly generate a composite N = pqr which is the product of three primes. After our protocols terminate N is publicly known, but neither party knows the factorization of N . Our protocols require the design of a new type of distributed primality te ..."
Abstract

Cited by 6 (1 self)
 Add to MetaCart
We describe protocols for three or more parties to jointly generate a composite N = pqr which is the product of three primes. After our protocols terminate N is publicly known, but neither party knows the factorization of N . Our protocols require the design of a new type of distributed primality test for testing that a given number is a product of three primes. We explain the cryptographic motivation and origin of this problem.
Efficient Generation of Shared RSA keys (Extended Abstract)
 In Kaliski [103
"... We describe efficient techniques for three (or more) parties to jointly generate an RSA key. At the end of the protocol an RSA modulus N = pq is publicly known. None of the parties know the factorization of N . In addition a public encryption exponent is publicly known and each party holds a share o ..."
Abstract

Cited by 5 (0 self)
 Add to MetaCart
We describe efficient techniques for three (or more) parties to jointly generate an RSA key. At the end of the protocol an RSA modulus N = pq is publicly known. None of the parties know the factorization of N . In addition a public encryption exponent is publicly known and each party holds a share of the private exponent that enables threshold decryption. Our protocols are efficient in computation and communication.