Results 11  20
of
267
Minion: A fast scalable constraint solver
 In: Proceedings of ECAI 2006, Riva del Garda
, 2006
"... Abstract. We present Minion, a new constraint solver. Empirical results on standard benchmarks show orders of magnitude performance gains over stateoftheart constraint toolkits. These gains increase with problem size – Minion delivers scalable constraint solving. Minion is a generalpurpose const ..."
Abstract

Cited by 88 (34 self)
 Add to MetaCart
Abstract. We present Minion, a new constraint solver. Empirical results on standard benchmarks show orders of magnitude performance gains over stateoftheart constraint toolkits. These gains increase with problem size – Minion delivers scalable constraint solving. Minion is a generalpurpose constraint solver, with an expressive input language based on the common constraint modelling device of matrix models. Focussing on matrix models supports a highlyoptimised implementation, exploiting the properties of modern processors. This contrasts with current constraint toolkits, which, in order to provide ever more modelling and solving options, have become progressively more complex at the cost of both performance and usability. Minion is a black box from the user point of view, deliberately providing few options. This, combined with its raw speed, makes Minion a substantial step towards Puget’s ‘Model and Run ’ constraint solving paradigm. 1
Solution reuse in dynamic constraint satisfaction problems
 In Proceedings of the 12th National Conference on Artificial Intelligence
, 1994
"... Many AI problems can be modeled as constraint satisfaction problems (CSP), but many of them are actually dynamic: the set of constraints to consider evolves because of the environment, the user or other agents in the framework of a distributed system. In this context, computing a new solution from s ..."
Abstract

Cited by 87 (6 self)
 Add to MetaCart
Many AI problems can be modeled as constraint satisfaction problems (CSP), but many of them are actually dynamic: the set of constraints to consider evolves because of the environment, the user or other agents in the framework of a distributed system. In this context, computing a new solution from scratch after each problem change is possible, but has two important drawbacks: inefficiency and instability of the successive solutions. In this paper, we propose a method for reusing any previous solution and producing a new one by local changes on the previous one. First we give the key idea and the corresponding algorithm. Then we establish
Backtracking in distributed constraint networks
 International Journal on Artificial Intelligence Tools
, 1998
"... The adaptation of software technology to distributed environments is an important challenge today. In this work we combine parallel and distributed search. By this way we add the potential speedup of a parallel exploration in the processing of distributed problems. This paper extends DIBT, a distri ..."
Abstract

Cited by 82 (15 self)
 Add to MetaCart
The adaptation of software technology to distributed environments is an important challenge today. In this work we combine parallel and distributed search. By this way we add the potential speedup of a parallel exploration in the processing of distributed problems. This paper extends DIBT, a distributed search procedure operating in distributed constraint networks [6]. The extension is twofold. First the procedure is updated to face delayed information problems upcoming in heterogeneous systems. Second, the search is extended to simultaneously explore independent parts of a distributed search tree. By this way we introduce parallelism into distributed search, which brings to Interleaved Distributed Intelligent BackTracking (IDIBT). Our results show that 1) insoluble problems do not greatly degrade performance over DIBT and 2) superlinear speedup can be achieved when the distribution of solution is nonuniform.
A complexity analysis of spacebounded learning algorithms for the constraint satisfaction problem
 In Proceedings of the Thirteenth National Conference on Artificial Intelligence
, 1996
"... Learning during backtrack search is a spaceintensive process that records information (such as additional constraints) in order to avoid redundant work. In this paper, we analyze the effects of polynomialspacebounded learning on runtime complexity of backtrack search. One spacebounded learning sc ..."
Abstract

Cited by 80 (2 self)
 Add to MetaCart
Learning during backtrack search is a spaceintensive process that records information (such as additional constraints) in order to avoid redundant work. In this paper, we analyze the effects of polynomialspacebounded learning on runtime complexity of backtrack search. One spacebounded learning scheme records only those constraints with limited size, and another records arbitrarily large constraints but deletes those that become irrelevant to the portion of the search space being explored. We find that relevancebounded learning allows better runtime bounds than sizebounded learning on structurally restricted constraint satisfaction problems. Even when restricted to linear space, our relevancebounded learning algorithm has runtime complexity near that of unrestricted (exponential spaceconsuming) learning schemes.
Backjumping for Quantified Boolean Logic Satisfiability
 ARTIFICIAL INTELLIGENCE
, 2001
"... The implementation of effective reasoning tools for deciding the satisfiability of Quantified Boolean Formulas (QBFs) is an important research issue in Artificial Intelligence. Many decision procedures have been proposed in the last few years, most of them based on the Davis, Logemann, Loveland ..."
Abstract

Cited by 76 (4 self)
 Add to MetaCart
The implementation of effective reasoning tools for deciding the satisfiability of Quantified Boolean Formulas (QBFs) is an important research issue in Artificial Intelligence. Many decision procedures have been proposed in the last few years, most of them based on the Davis, Logemann, Loveland procedure (DLL) for propositional satisfiability (SAT). In this paper we show how it is possible to extend the conflictdirected backjumping schema for SAT to QBF: when applicable, it allows to jump over existentially quantified literals while backtracking. We introduce solutiondirected backjumping, which allows the same for universally quantified literals. Then, we show how it is possible to incorporate both conflictdirected and solutiondirected backjumping in a DLLbased decision procedure for QBF satisfiability. We also implement and test the procedure: The experimental analysis shows that, because of backjumping, significant speedups can be obtained. While there have been several proposals for backjumping in SAT, this is the first time as far as we know this idea has been proposed, implemented and experimented for QBFs.
DeadEnd Driven Learning
, 1994
"... The paper evaluates the effectiveness of learning for speeding up the solution of constraint satisfaction problems. It extends previous work (Dechter 1990) by introducing a new and powerful variant of learning and by presenting an extensive empirical study on much larger and more difficult problem i ..."
Abstract

Cited by 75 (5 self)
 Add to MetaCart
The paper evaluates the effectiveness of learning for speeding up the solution of constraint satisfaction problems. It extends previous work (Dechter 1990) by introducing a new and powerful variant of learning and by presenting an extensive empirical study on much larger and more difficult problem instances. Our results show that learning can speed up backjumping when using either a fixed or dynamic variable ordering. However, the improvement with a dynamic variable ordering is not as great, and for some classes of problems learning is helpful only when a limit is placed on the size of new constraints learned.
QuickXplain: preferred explanations and relaxations for overconstrained problems
 In Proceedings of AAAI’04
, 2004
"... Overconstrained problems can have an exponential number of conflicts, which explain the failure, and an exponential number of relaxations, which restore the consistency. A user of an interactive application, however, desires explanations and relaxations containing the most important constraints. To ..."
Abstract

Cited by 75 (1 self)
 Add to MetaCart
Overconstrained problems can have an exponential number of conflicts, which explain the failure, and an exponential number of relaxations, which restore the consistency. A user of an interactive application, however, desires explanations and relaxations containing the most important constraints. To address this need, we define preferred explanations and relaxations based on user preferences between constraints and we compute them by a generic method which works for arbitrary CP, SAT, or DL solvers. We significantly accelerate the basic method by a divideandconquer strategy and thus provide the technological basis for the explanation facility of a principal industrial constraint programming tool, which is, for example, used in numerous configuration applications.
Lookahead value ordering for constraint satisfaction problems
 In Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence
, 1995
"... Looking ahead during search is often useful when solving constraint satisfaction problems. Previous studies have shown that looking ahead helps by causing deadends to occur earlier in the search, and by providing information that is useful for dynamic variable ordering. In this paper, we show that ..."
Abstract

Cited by 71 (4 self)
 Add to MetaCart
Looking ahead during search is often useful when solving constraint satisfaction problems. Previous studies have shown that looking ahead helps by causing deadends to occur earlier in the search, and by providing information that is useful for dynamic variable ordering. In this paper, we show that another benefit of looking ahead is a useful domain value ordering heuristic, which we call lookahead value ordering or LVO. LVO counts the number of times each value of the current variable conflicts with some value of a future variable, and the value with the lowest number of conflicts is chosen first. Our experiments show that lookahead value ordering can be of substantial benefit, especially on hard constraint satisfaction problems. 1
An Empirical Study of Dynamic Variable Ordering Heuristics for the Constraint Satisfaction Problem
 In Proceedings of CP96
, 1996
"... . The constraint satisfaction community has developed a number of heuristics for variable ordering during backtracking search. For example, in conjunction with algorithms which check forwards, the FailFirst (FF) and Brelaz (Bz) heuristics are cheap to evaluate and are generally considered to be ver ..."
Abstract

Cited by 70 (15 self)
 Add to MetaCart
. The constraint satisfaction community has developed a number of heuristics for variable ordering during backtracking search. For example, in conjunction with algorithms which check forwards, the FailFirst (FF) and Brelaz (Bz) heuristics are cheap to evaluate and are generally considered to be very effective. Recent work to understand phase transitions in NPcomplete problem classes enables us to compare such heuristics over a large range of different kinds of problems. Furthermore, we are now able to start to understand the reasons for the success, and therefore also the failure, of heuristics, and to introduce new heuristics which achieve the successes and avoid the failures. In this paper, we present a comparison of the Bz and FF heuristics in forward checking algorithms applied to randomlygenerated binary CSP's. We also introduce new and very general heuristics and present an extensive study of these. These new heuristics are usually as good as or better than Bz and FF, and we id...
QuickXPlain: Conflict Detection for Arbitrary Constraint Propagation Algorithms
, 2001
"... Existing conflict detection methods for CSP's such as [de Kleer, 1989; Ginsberg, 1993] cannot make use of powerful propagation which makes them unusable for complex realworld problems. On the other hand, powerful constraint propagation methods lack the ability to extract dependencies or conflicts, ..."
Abstract

Cited by 70 (0 self)
 Add to MetaCart
Existing conflict detection methods for CSP's such as [de Kleer, 1989; Ginsberg, 1993] cannot make use of powerful propagation which makes them unusable for complex realworld problems. On the other hand, powerful constraint propagation methods lack the ability to extract dependencies or conflicts, which makes them unusable for many advanced AI reasoning methods that require conflicts, as well as for interactive applications that require explanations. In this paper, we present a nonintrusive conflict detection algorithm called QUICKXPLAIN that tackles those problems. It can be applied to any propagation or inference algorithm as powerful as it may be. Our algorithm improves the efficiency of direct nonintrusive conflict detectors by recursively partitioning the problem into subproblems of half the size and by immediately skipping those subproblems that do not contain an element of the conflict. QUICKXPLAIN is used as explanation component of an advanced industrial constraintbased configuration tool.