Results 1  10
of
1,024
DavenportSchinzel Sequences and Their Geometric Applications
, 1998
"... An (n; s) DavenportSchinzel sequence, for positive integers n and s, is a sequence composed of n distinct symbols with the properties that no two adjacent elements are equal, and that it does not contain, as a (possibly noncontiguous) subsequence, any alternation a \Delta \Delta \Delta b \Delta \ ..."
Abstract

Cited by 479 (121 self)
 Add to MetaCart
(Show Context)
An (n; s) DavenportSchinzel sequence, for positive integers n and s, is a sequence composed of n distinct symbols with the properties that no two adjacent elements are equal, and that it does not contain, as a (possibly noncontiguous) subsequence, any alternation a \Delta \Delta \Delta b \Delta \Delta \Delta a \Delta \Delta \Delta b \Delta \Delta \Delta of length s + 2 between two distinct symbols a and b. The close relationship between DavenportSchinzel sequences and the combinatorial structure of lower envelopes of collections of functions make the sequences very attractive because a variety of geometric problems can be formulated in terms of lower envelopes. A nearlinear bound on the maximum length of DavenportSchinzel sequences enable us to derive sharp bounds on the combinatorial structure underlying various geometric problems, which in turn yields efficient algorithms for these problems.
Semantical considerations on FloydHoare Logic
, 1976
"... This paper deals with logics of programs. The objective is to formalize a notion of program description, and to give both plausible (semantic) and effective (syntactic) criteria for the notion of truth of a description. A novel feature of this treatment is the development of the mathematics underlyi ..."
Abstract

Cited by 269 (11 self)
 Add to MetaCart
This paper deals with logics of programs. The objective is to formalize a notion of program description, and to give both plausible (semantic) and effective (syntactic) criteria for the notion of truth of a description. A novel feature of this treatment is the development of the mathematics underlying FloydHoare axiom systems independently of such systems. Other directions that such research might take are considered.
Structure and Complexity of Relational Queries
 Journal of Computer and System Sciences
, 1982
"... This paper is an attempt at laying the foundations for the classification of queries on relational data bases according to their structure and their computational complexity. Using the operations of composition and fixpoints, a Z// hierarchy of height w 2, called the fixpoint query hierarchy, i ..."
Abstract

Cited by 266 (3 self)
 Add to MetaCart
(Show Context)
This paper is an attempt at laying the foundations for the classification of queries on relational data bases according to their structure and their computational complexity. Using the operations of composition and fixpoints, a Z// hierarchy of height w 2, called the fixpoint query hierarchy, is defined, and its properties investigated. The hierarchy includes most of the queries considered in the literathre including those of Codd and Aho and Ullman
The Benefits of Relaxing Punctuality
, 1996
"... The most natural, compositional, way of modeling realtime systems uses a dense domain for time. The satis ability of timing constraints that are capable of expressing punctuality in this model, however, is known to be undecidable. We introduce a temporal language that can constrain the time differe ..."
Abstract

Cited by 255 (17 self)
 Add to MetaCart
The most natural, compositional, way of modeling realtime systems uses a dense domain for time. The satis ability of timing constraints that are capable of expressing punctuality in this model, however, is known to be undecidable. We introduce a temporal language that can constrain the time difference between events only with finite, yet arbitrary, precision and show the resulting logic to be EXPSPACEcomplete. This result allows us to develop an algorithm for the verification of timing properties of realtime systems with a dense semantics.
Realtime logics: complexity and expressiveness
 INFORMATION AND COMPUTATION
, 1993
"... The theory of the natural numbers with linear order and monadic predicates underlies propositional linear temporal logic. To study temporal logics that are suitable for reasoning about realtime systems, we combine this classical theory of in nite state sequences with a theory of discrete time, via ..."
Abstract

Cited by 250 (16 self)
 Add to MetaCart
(Show Context)
The theory of the natural numbers with linear order and monadic predicates underlies propositional linear temporal logic. To study temporal logics that are suitable for reasoning about realtime systems, we combine this classical theory of in nite state sequences with a theory of discrete time, via a monotonic function that maps every state to its time. The resulting theory of timed state sequences is shown to be decidable, albeit nonelementary, and its expressive power is characterized by! regular sets. Several more expressive variants are proved to be highly undecidable. This framework allows us to classify a wide variety of realtime logics according to their complexity and expressiveness. Indeed, it follows that most formalisms proposed in the literature cannot be decided. We are, however, able to identify two elementary realtime temporal logics as expressively complete fragments of the theory of timed state sequences, and we present tableaubased decision procedures for checking validity. Consequently, these two formalisms are wellsuited for the speci cation and veri cation of realtime systems.
Logics and Models of Real Time: A Survey
"... We survey logicbased and automatabased languages and techniques for the specification and verification of realtime systems. In particular, we discuss three syntactic extensions of temporal logic: timebounded operators, freeze quantification, and time variables. We also discuss the extension of ..."
Abstract

Cited by 220 (15 self)
 Add to MetaCart
We survey logicbased and automatabased languages and techniques for the specification and verification of realtime systems. In particular, we discuss three syntactic extensions of temporal logic: timebounded operators, freeze quantification, and time variables. We also discuss the extension of finitestate machines with clocks and the extension of transition systems with time bounds on the transitions. All of the resulting notations can be interpreted over a variety of different models of time and computation, including linear and branching time, interleaving and true concurrency, discrete and continuous time. For each choice of syntax and semantics, we summarize the results that are known about expressive power, algorithmic finitestate verification, and deductive verification.
A Propositional Modal Logic of Time Intervals
 Journal of the ACM
, 1996
"... : In certain areas of artificial intelligence there is need to represent continuous change and to make statements that are interpreted with respect to time intervals rather than time points. To this end we develop a modal temporal logic based on time intervals, a logic which can be viewed as a gener ..."
Abstract

Cited by 162 (2 self)
 Add to MetaCart
(Show Context)
: In certain areas of artificial intelligence there is need to represent continuous change and to make statements that are interpreted with respect to time intervals rather than time points. To this end we develop a modal temporal logic based on time intervals, a logic which can be viewed as a generalization of pointbased modal temporal logic. We discuss related logics, give an intuitive presentation of the new logic, and define its formal syntax and semantics. We make no assumption about the underlying nature of time, allowing it to be discrete (such as the natural numbers) or continuous (such as the rationals or the reals), linear or branching, complete (such as the reals) or not (such as the rationals). We show, however, that there are formulas in the logic that allow us to distinguish all these situations. We also give a translation of our logic into firstorder logic, which allows us to apply some results on firstorder logic to our modal one. Finally, we consider the difficulty o...
Tractable Reasoning via Approximation
 Artificial Intelligence
, 1995
"... Problems in logic are wellknown to be hard to solve in the worst case. Two different strategies for dealing with this aspect are known from the literature: language restriction and theory approximation. In this paper we are concerned with the second strategy. Our main goal is to define a semantical ..."
Abstract

Cited by 118 (0 self)
 Add to MetaCart
(Show Context)
Problems in logic are wellknown to be hard to solve in the worst case. Two different strategies for dealing with this aspect are known from the literature: language restriction and theory approximation. In this paper we are concerned with the second strategy. Our main goal is to define a semantically wellfounded logic for approximate reasoning, which is justifiable from the intuitive point of view, and to provide fast algorithms for dealing with it even when using expressive languages. We also want our logic to be useful to perform approximate reasoning in different contexts. We define a method for the approximation of decision reasoning problems based on multivalued logics. Our work expands and generalizes in several directions ideas presented by other researchers. The major features of our technique are: 1) approximate answers give semantically clear information about the problem at hand; 2) approximate answers are easier to compute than answers to the original problem; 3) approxim...
Agentbased computational models and generative social science
 Complexity
, 1999
"... This article argues that the agentbased computational model permits a distinctive approach to social science for which the term “generative ” is suitable. In defending this terminology, features distinguishing the approach from both “inductive ” and “deductive ” science are given. Then, the followi ..."
Abstract

Cited by 115 (0 self)
 Add to MetaCart
(Show Context)
This article argues that the agentbased computational model permits a distinctive approach to social science for which the term “generative ” is suitable. In defending this terminology, features distinguishing the approach from both “inductive ” and “deductive ” science are given. Then, the following specific contributions to social science are discussed: The agentbased computational model is a new tool for empirical research. It offers a natural environment for the study of connectionist phenomena in social science. Agentbased modeling provides a powerful way to address certain enduring—and especially interdisciplinary—questions. It allows one to subject certain core theories—such as neoclassical microeconomics—to important types of stress (e.g., the effect of evolving preferences). It permits one to study how rules of individual behavior give rise—or “map up”—to macroscopic regularities and organizations. In turn, one can employ laboratory behavioral research findings to select among competing agentbased (“bottom up”) models. The agentbased approach may well have the important effect of decoupling individual rationality from macroscopic equilibrium and of separating decision science from social science more generally. Agentbased modeling offers powerful new forms of hybrid theoreticalcomputational work; these are particularly relevant to the study of nonequilibrium systems. The agentbased approach invites the interpretation of society as a distributed computational device, and in turn the interpretation of social dynamics as a type of computation. This interpretation raises important foundational issues in social science—some related to intractability, and some to undecidability proper. Finally, since “emergence” figures prominently in this literature, I take up the connection between agentbased modeling and classical emergentism, criticizing the latter and arguing that the two are incompatible. � 1999 John Wiley &