Results 1  10
of
43
Domains for Computation in Mathematics, Physics and Exact Real Arithmetic
 Bulletin of Symbolic Logic
, 1997
"... We present a survey of the recent applications of continuous domains for providing simple computational models for classical spaces in mathematics including the real line, countably based locally compact spaces, complete separable metric spaces, separable Banach spaces and spaces of probability dist ..."
Abstract

Cited by 48 (10 self)
 Add to MetaCart
We present a survey of the recent applications of continuous domains for providing simple computational models for classical spaces in mathematics including the real line, countably based locally compact spaces, complete separable metric spaces, separable Banach spaces and spaces of probability distributions. It is shown how these models have a logical and effective presentation and how they are used to give a computational framework in several areas in mathematics and physics. These include fractal geometry, where new results on existence and uniqueness of attractors and invariant distributions have been obtained, measure and integration theory, where a generalization of the Riemann theory of integration has been developed, and real arithmetic, where a feasible setting for exact computer arithmetic has been formulated. We give a number of algorithms for computation in the theory of iterated function systems with applications in statistical physics and in period doubling route to chao...
A DomainTheoretic Approach to Computability on the Real Line
, 1997
"... In recent years, there has been a considerable amount of work on using continuous domains in real analysis. Most notably are the development of the generalized Riemann integral with applications in fractal geometry, several extensions of the programming language PCF with a real number data type, and ..."
Abstract

Cited by 43 (8 self)
 Add to MetaCart
In recent years, there has been a considerable amount of work on using continuous domains in real analysis. Most notably are the development of the generalized Riemann integral with applications in fractal geometry, several extensions of the programming language PCF with a real number data type, and a framework and an implementation of a package for exact real number arithmetic. Based on recursion theory we present here a precise and direct formulation of effective representation of real numbers by continuous domains, which is equivalent to the representation of real numbers by algebraic domains as in the work of StoltenbergHansen and Tucker. We use basic ingredients of an effective theory of continuous domains to spell out notions of computability for the reals and for functions on the real line. We prove directly that our approach is equivalent to the established Turingmachine based approach which dates back to Grzegorczyk and Lacombe, is used by PourEl & Richards in their found...
Abstract versus concrete computation on metric partial algebras
 ACM Transactions on Computational Logic
, 2004
"... Data types containing infinite data, such as the real numbers, functions, bit streams and waveforms, are modelled by topological manysorted algebras. In the theory of computation on topological algebras there is a considerable gap between socalled abstract and concrete models of computation. We pr ..."
Abstract

Cited by 30 (19 self)
 Add to MetaCart
Data types containing infinite data, such as the real numbers, functions, bit streams and waveforms, are modelled by topological manysorted algebras. In the theory of computation on topological algebras there is a considerable gap between socalled abstract and concrete models of computation. We prove theorems that bridge the gap in the case of metric algebras with partial operations. With an abstract model of computation on an algebra, the computations are invariant under isomorphisms and do not depend on any representation of the algebra. Examples of such models are the ‘while ’ programming language and the BCSS model. With a concrete model of computation, the computations depend on the choice of a representation of the algebra and are not invariant under isomorphisms. Usually, the representations are made from the set N of natural numbers, and computability is reduced to classical computability on N. Examples of such models are computability via effective metric spaces, effective domain representations, and type two enumerability. The theory of abstract models is stable: there are many models of computation, and
An analog characterization of the Grzegorczyk hierarchy
 Journal of Complexity
, 2002
"... We study a restricted version of Shannon's General . . . ..."
Abstract

Cited by 29 (15 self)
 Add to MetaCart
We study a restricted version of Shannon's General . . .
A domaintheoretic account of Picard’s theorem
 In Proceedings of ICALP’04
, 2004
"... Abstract. We present a domaintheoretic version of Picard’s theorem for solving classical initial value problems in R n. For the case of vector fields that satisfy a Lipschitz condition, we construct an iterative algorithm that gives two sequences of piecewise linear maps with rational coefficients, ..."
Abstract

Cited by 18 (9 self)
 Add to MetaCart
Abstract. We present a domaintheoretic version of Picard’s theorem for solving classical initial value problems in R n. For the case of vector fields that satisfy a Lipschitz condition, we construct an iterative algorithm that gives two sequences of piecewise linear maps with rational coefficients, which converge, respectively from below and above, exponentially fast to the unique solution of the initial value problem. We provide a detailed analysis of the speed of convergence and the complexity of computing the iterates. The algorithm uses proper data types based on rational arithmetic, where no rounding of real numbers is required. Thus, we obtain an implementation framework to solve initial value problems, which is sound and, in contrast to techniques based on interval analysis, also complete: the unique solution can be actually computed within any degree of required accuracy. 1
Recursive analysis characterized as a class of real recursive functions
 Fundamenta Informaticae
, 2006
"... Recently, using a limit schema, we presented an analog and machine independent algebraic characterization of elementary functions over the real numbers in the sense of recursive analysis. In a different and orthogonal work, we proposed a minimalization schema that allows to provide a class of real r ..."
Abstract

Cited by 18 (8 self)
 Add to MetaCart
Recently, using a limit schema, we presented an analog and machine independent algebraic characterization of elementary functions over the real numbers in the sense of recursive analysis. In a different and orthogonal work, we proposed a minimalization schema that allows to provide a class of real recursive functions that corresponds to extensions of computable functions over the integers. Mixing the two approaches we prove that computable functions over the real numbers in the sense of recursive analysis can be characterized as the smallest class of functions that contains some basic functions, and closed by composition, linear integration, minimalization and limit schema.
Computable Banach Spaces via Domain Theory
 Theoretical Computer Science
, 1998
"... This paper extends the ordertheoretic approach to computable analysis via continuous domains to complete metric spaces and Banach spaces. We employ the domain of formal balls to define a computability theory for complete metric spaces. For Banach spaces, the domain specialises to the domain of clos ..."
Abstract

Cited by 15 (2 self)
 Add to MetaCart
This paper extends the ordertheoretic approach to computable analysis via continuous domains to complete metric spaces and Banach spaces. We employ the domain of formal balls to define a computability theory for complete metric spaces. For Banach spaces, the domain specialises to the domain of closed balls, ordered by reversed inclusion. We characterise computable linear operators as those which map computable sequences to computable sequences and are effectively bounded. We show that the domaintheoretic computability theory is equivalent to the wellestablished approach by PourEl and Richards. 1 Introduction This paper is part of a programme to introduce the theory of continuous domains as a new approach to computable analysis. Initiated by the various applications of continuous domain theory to modelling classical mathematical spaces and performing computations as outlined in the recent survey paper by Edalat [6], the authors started this work with [9] which was concerned with co...
On the complexity of real functions
, 2005
"... We establish a new connection between the two most common traditions in the theory of real computation, the BlumShubSmale model and the Computable Analysis approach. We then use the connection to develop a notion of computability and complexity of functions over the reals that can be viewed as an ..."
Abstract

Cited by 15 (5 self)
 Add to MetaCart
We establish a new connection between the two most common traditions in the theory of real computation, the BlumShubSmale model and the Computable Analysis approach. We then use the connection to develop a notion of computability and complexity of functions over the reals that can be viewed as an extension of both models. We argue that this notion is very natural when one tries to determine just how “difficult ” a certain function is for a very rich class of functions. 1
Computability, noncomputability and undecidability of maximal intervals of IVPs
 Trans. Amer. Math. Soc
"... Abstract. Let (α, β) ⊆ R denote the maximal interval of existence of solution for the initialvalue problem { dx = f(t, x) dt x(t0) = x0, where E is an open subset of R m+1, f is continuous in E and (t0, x0) ∈ E. We show that, under the natural definition of computability from the point of view o ..."
Abstract

Cited by 14 (13 self)
 Add to MetaCart
Abstract. Let (α, β) ⊆ R denote the maximal interval of existence of solution for the initialvalue problem { dx = f(t, x) dt x(t0) = x0, where E is an open subset of R m+1, f is continuous in E and (t0, x0) ∈ E. We show that, under the natural definition of computability from the point of view of applications, there exist initialvalue problems with computable f and (t0, x0) whose maximal interval of existence (α, β) is noncomputable. The fact that f may be taken to be analytic shows that this is not a lack of regularity phenomenon. Moreover, we get upper bounds for the “degree of noncomputability” by showing that (α, β) is r.e. (recursively enumerable) open under very mild hypotheses. We also show that the problem of determining whether the maximal interval is bounded or unbounded is in general undecidable. 1.
Elementarily computable functions over the real numbers and Rsubrecursive functions
 THEORETICAL COMPUTER SCIENCE
, 2005
"... We present an analog and machineindependent algebraic characterization of elementarily computable functions over the real numbers in the sense of recursive analysis: we prove that they correspond to the smallest class of functions that contains some basic functions, and closed by composition, linea ..."
Abstract

Cited by 13 (5 self)
 Add to MetaCart
We present an analog and machineindependent algebraic characterization of elementarily computable functions over the real numbers in the sense of recursive analysis: we prove that they correspond to the smallest class of functions that contains some basic functions, and closed by composition, linear integration, and a simple limit schema. We generalize this result to all higher levels of the Grzegorczyk Hierarchy. This paper improves several previous partial characterizations and has a dual interest: • Concerning recursive analysis, our results provide machineindependent characterizations of natural classes of computable functions over the real numbers, allowing to define these classes without usual considerations on higherorder (type 2) Turing machines. • Concerning analog models, our results provide a characterization of the power of a natural class of analog models over the real numbers and provide new insights for understanding the relations between several analog computational models.