Results 1 
6 of
6
Comparing mathematical provers
 In Mathematical Knowledge Management, 2nd Int’l Conf., Proceedings
, 2003
"... Abstract. We compare fifteen systems for the formalizations of mathematics with the computer. We present several tables that list various properties of these programs. The three main dimensions on which we compare these systems are: the size of their library, the strength of their logic and their le ..."
Abstract

Cited by 23 (0 self)
 Add to MetaCart
Abstract. We compare fifteen systems for the formalizations of mathematics with the computer. We present several tables that list various properties of these programs. The three main dimensions on which we compare these systems are: the size of their library, the strength of their logic and their level of automation. 1
CCoRN, the Constructive Coq Repository at Nijmegan
"... We present CCoRN, the Constructive Coq Repository at Nijmegen. It consists of a library of constructive algebra and analysis, formalized in the theorem prover Coq. In this paper we explain the structure, the contents and the use of the library. Moreover we discuss the motivation and the (possible) ..."
Abstract

Cited by 18 (9 self)
 Add to MetaCart
We present CCoRN, the Constructive Coq Repository at Nijmegen. It consists of a library of constructive algebra and analysis, formalized in the theorem prover Coq. In this paper we explain the structure, the contents and the use of the library. Moreover we discuss the motivation and the (possible) applications of such a library.
Formalizing Arrow’s theorem
"... Abstract. We present a small project in which we encoded a proof of Arrow’s theorem – probably the most famous results in the economics field of social choice theory – in the computer using the Mizar system. We both discuss the details of this specific project, as well as describe the process of for ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
Abstract. We present a small project in which we encoded a proof of Arrow’s theorem – probably the most famous results in the economics field of social choice theory – in the computer using the Mizar system. We both discuss the details of this specific project, as well as describe the process of formalization (encoding proofs in the computer) in general. Keywords: formalization of mathematics, Mizar, social choice theory, Arrow’s theorem, GibbardSatterthwaite theorem, proof errors.
An executable formalization of the HOL/Nuprl connection in the metalogical framework Twelf
 In Geoff Sutcliffe and Andrei Voronkov, editors, Proceedings of Logic for Programming, Artificial Intelligence, and Reasoning (LPAR), Montego
, 2005
"... Abstract. Howe’s HOL/Nuprl connection is an interesting example of a translation between two fundamentally different logics, namely a typed higherorder logic and a polymorphic extensional type theory. In earlier work we have established a prooftheoretic correctness result of the translation in a w ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
Abstract. Howe’s HOL/Nuprl connection is an interesting example of a translation between two fundamentally different logics, namely a typed higherorder logic and a polymorphic extensional type theory. In earlier work we have established a prooftheoretic correctness result of the translation in a way that complements Howe’s semanticsbased justification and furthermore goes beyond the original HOL/Nuprl connection by providing the foundation for a proof translator. Using the Twelf logical framework, the present paper goes one step further. It presents the first rigorous formalization of this treatment in a logical framework, and hence provides a safe alternative to the translation of proofs. 1
An interpretation of isabelle/hol in hol light
 In Furbach and Shankar [20
"... Abstract. We define an interpretation of the Isabelle/HOL logic in HOL Light and its metalanguage, OCaml. Some aspects of the Isabelle logic are not representable directly in the HOL Light object logic. The interpretation thus takes the form of a set of elaboration rules, where features of the Isabe ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
Abstract. We define an interpretation of the Isabelle/HOL logic in HOL Light and its metalanguage, OCaml. Some aspects of the Isabelle logic are not representable directly in the HOL Light object logic. The interpretation thus takes the form of a set of elaboration rules, where features of the Isabelle logic that cannot be represented directly are elaborated to functors in OCaml. We demonstrate the effectiveness of the interpretation via an implementation, translating a significant part of the Isabelle standard library into HOL Light. 1
An Executable Formalization of the HOL/Nuprl Connection
 in the Metalogical Framework Twelf. LPAR 2004
"... Abstract. Howe’s HOL/Nuprl connection is an interesting example of a translation between two fundamentally different logics, namely a typed higherorder logic and a polymorphic extensional type theory. In earlier work we have established a prooftheoretic correctness result of the translation in a w ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
Abstract. Howe’s HOL/Nuprl connection is an interesting example of a translation between two fundamentally different logics, namely a typed higherorder logic and a polymorphic extensional type theory. In earlier work we have established a prooftheoretic correctness result of the translation in a way that complements Howe’s semanticsbased justification and furthermore goes beyond the original HOL/Nuprl connection by providing the foundation for a proof translator. Using the Twelf logical framework, the present paper goes one step further. It presents the first rigorous formalization of this treatment in a logical framework, and hence provides a safe alternative to the translation of proofs. 1