Results 1 
2 of
2
Nominal Unification
 Theoretical Computer Science
, 2003
"... We present a generalisation of firstorder unification to the practically important case of equations between terms involving binding operations. A substitution of terms for variables solves such an equation if it makes the equated terms #equivalent, i.e. equal up to renaming bound names. For the a ..."
Abstract

Cited by 52 (20 self)
 Add to MetaCart
We present a generalisation of firstorder unification to the practically important case of equations between terms involving binding operations. A substitution of terms for variables solves such an equation if it makes the equated terms #equivalent, i.e. equal up to renaming bound names. For the applications we have in mind, we must consider the simple, textual form of substitution in which names occurring in terms may be captured within the scope of binders upon substitution. We are able to take a `nominal' approach to binding in which bound entities are explicitly named (rather than using nameless, de Bruijnstyle representations) and yet get a version of this form of substitution that respects #equivalence and possesses good algorithmic properties. We achieve this by adapting an existing idea and introducing a key new idea. The existing idea is terms involving explicit substitutions of names for names, except that here we only use explicit permutations (bijective substitutions). The key new idea is that the unification algorithm should solve not only equational problems, but also problems about the freshness of names for terms. There is a simple generalisation of the classical firstorder unification algorithm to this setting which retains the latter's pleasant properties: unification problems involving #equivalence and freshness are decidable; and solvable problems possess most general solutions.
Nominal rewriting
 Information and Computation
"... Nominal rewriting is based on the observation that if we add support for alphaequivalence to firstorder syntax using the nominalset approach, then systems with binding, including higherorder reduction schemes such as lambdacalculus betareduction, can be smoothly represented. Nominal rewriting ma ..."
Abstract

Cited by 19 (7 self)
 Add to MetaCart
Nominal rewriting is based on the observation that if we add support for alphaequivalence to firstorder syntax using the nominalset approach, then systems with binding, including higherorder reduction schemes such as lambdacalculus betareduction, can be smoothly represented. Nominal rewriting maintains a strict distinction between variables of the objectlanguage (atoms) and of the metalanguage (variables or unknowns). Atoms may be bound by a special abstraction operation, but variables cannot be bound, giving the framework a pronounced firstorder character, since substitution of terms for variables is not captureavoiding. We show how good properties of firstorder rewriting survive the extension, by giving an efficient rewriting algorithm, a critical pair lemma, and a confluence theorem