Results 1  10
of
39
Constructivism and Proof Theory
, 2003
"... Introduction to the constructive point of view in the foundations of mathematics, in
particular intuitionism due to L.E.J. Brouwer, constructive recursive mathematics
due to A.A. Markov, and Bishop’s constructive mathematics. The constructive interpretation
and formalization of logic is described. F ..."
Abstract

Cited by 162 (4 self)
 Add to MetaCart
Introduction to the constructive point of view in the foundations of mathematics, in
particular intuitionism due to L.E.J. Brouwer, constructive recursive mathematics
due to A.A. Markov, and Bishop’s constructive mathematics. The constructive interpretation
and formalization of logic is described. For constructive (intuitionistic)
arithmetic, Kleene’s realizability interpretation is given; this provides an example
of the possibility of a constructive mathematical practice which diverges from classical
mathematics. The crucial notion in intuitionistic analysis, choice sequence, is
briefly described and some principles which are valid for choice sequences are discussed.
The second half of the article deals with some aspects of proof theory, i.e.,
the study of formal proofs as combinatorial objects. Gentzen’s fundamental contributions
are outlined: his introduction of the socalled Gentzen systems which use
sequents instead of formulas and his result on firstorder arithmetic showing that
(suitably formalized) transfinite induction up to the ordinal "0 cannot be proved in
firstorder arithmetic.
Concrete Domains
 Theoretical Computer Science
, 1993
"... This paper introduces the theory of a particular kind of computation domains called concrete domains. The purpose of this theory is to find a satisfactory framework for the notions of coroutine computation and sequentiality of evaluation. Diagrams are emphasized because I believe that an important ..."
Abstract

Cited by 35 (1 self)
 Add to MetaCart
This paper introduces the theory of a particular kind of computation domains called concrete domains. The purpose of this theory is to find a satisfactory framework for the notions of coroutine computation and sequentiality of evaluation. Diagrams are emphasized because I believe that an important part of learning lattice theory is the acquisition of skill in drawing diagrams. George Gratzer 1 Domains of computation In general, we follow Scott's approach [Sco70]. To every syntactic object one associates a semantic object which is found in an appropriate semantic domain. For technical details, we follow [Mil73] and [Plo78] rather than Scott. Definition 1.1 A partial order is a pair ! D; ? where D is a nonempty set and is a binary relation satisfying: i) 8x 2 D x x (reflexivity) ii) 8x; y 2 D x y; y x ) x = y (antisymmetry) iii) 8x; y; z 2 D x y; y z ) x z (transitivity) One writes x ! y when x y and x 6= y. Two elements x and y are comparable when either x y or y x. W...
Extensible Denotational Language Specifications
 SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SOFTWARE, NUMBER 789 IN LNCS
, 1994
"... Traditional denotational semantics assigns radically different meanings to one and the same phrase depending on the rest of the programming language. If the language is purely functional, the denotation of a numeral is a function from environments to integers. But, in a functional language with impe ..."
Abstract

Cited by 32 (5 self)
 Add to MetaCart
Traditional denotational semantics assigns radically different meanings to one and the same phrase depending on the rest of the programming language. If the language is purely functional, the denotation of a numeral is a function from environments to integers. But, in a functional language with imperative control operators, a numeral denotes a function from environments and continuations to integers. This paper introduces a new format for denotational language specifications, extended direct semantics, that accommodates orthogonal extensions of a language without changing the denotations of existing phrases. An extended direct semantics always maps a numeral to the same denotation: the injection of the corresponding number into the domain of values. In general, the denotation of a phrase in a functional language is always a projection of the denotation of the same phrase in the semantics of an extended languageno matter what the extension is. Based on extended direct semantics, i...
Not enough points is enough
 IN: COMPUTER SCIENCE LOGIC. VOLUME 4646 OF LECTURE NOTES IN COMPUTER SCIENCE
, 2007
"... Models of the untyped λcalculus may be defined either as applicative structures satisfying a bunch of first order axioms, known as “λmodels”, or as (structures arising from) any reflexive object in a cartesian closed category (ccc, for brevity). These notions are tightly linked in the sense that: ..."
Abstract

Cited by 19 (9 self)
 Add to MetaCart
Models of the untyped λcalculus may be defined either as applicative structures satisfying a bunch of first order axioms, known as “λmodels”, or as (structures arising from) any reflexive object in a cartesian closed category (ccc, for brevity). These notions are tightly linked in the sense that: given a λmodel A, one may define a ccc in which A (the carrier set) is a reflexive object; conversely, if U is a reflexive object in a ccc C, having enough points, then C ( , U) may be turned into a λmodel. It is well known that, if C does not have enough points, then the applicative structure C ( , U) is not a λmodel in general. This paper: (i) shows that this mismatch can be avoided by choosing appropriately the carrier set of the λmodel associated with U; (ii) provides an example of an extensional reflexive object D in a ccc without enough points: the Kleislicategory of the comonad “finite multisets ” on Rel; (iii) presents some algebraic properties of the λmodel associated with D by (i) which make it suitable for dealing with nondeterministic extensions of the untyped λcalculus.
Universal Profinite Domains
 Information and Computation
, 1987
"... . We introduce a bicartesian closed category of what we call profinite domains. Study of these domains is carried out through the use of an equivalent category of preorders in a manner similar to the information systems approach advocated by Dana Scott and others. A class of universal profinite dom ..."
Abstract

Cited by 15 (1 self)
 Add to MetaCart
. We introduce a bicartesian closed category of what we call profinite domains. Study of these domains is carried out through the use of an equivalent category of preorders in a manner similar to the information systems approach advocated by Dana Scott and others. A class of universal profinite domains is defined and used to derive sufficient conditions for the profinite solution of domain equations involving continuous operators. As a special instance of this construction, a universal domain for the category SFP is demonstrated. Necessary conditions for the existence of solutions for domain equations over the profinites are also given and used to derive results about solutions of some equations. A new universal bounded complete domain is also demonstrated using an operator which has bounded complete domains as its fixed points. 1 Introduction. For our purposes a domain equation has the form X ¸ = F (X) where F is an operator on a class of semantic domains (typically, F is an endof...
Logical Full Abstraction and PCF
 Tbilisi Symposium on Language, Logic and Computation. SiLLI/CSLI
, 1996
"... ion and PCF John Longley Gordon Plotkin March 15, 1996 Abstract We introduce the concept of logical full abstraction, generalising the usual equational notion. We consider the language PCF and two extensions with "parallel" operations. The main result is that, for standard interpretations, lo ..."
Abstract

Cited by 13 (5 self)
 Add to MetaCart
ion and PCF John Longley Gordon Plotkin March 15, 1996 Abstract We introduce the concept of logical full abstraction, generalising the usual equational notion. We consider the language PCF and two extensions with "parallel" operations. The main result is that, for standard interpretations, logical full abstraction is equivalent to equational full abstraction together with universality; the proof involves constructing enumeration operators. We also consider restrictions on logical complexity and on the level of types. 1 Introduction The study of denotational semantics seeks to provide mathematical descriptions of programming languages by giving denotations of programs in terms of previously understood mathematical structures. For example, if P is a program that takes an input and produces an output, we might take its denotation to be a function from a set of inputvalues to a set of outputvalues. The most widelyknown approach to denotational semantics is that of traditiona...
Infinite sets that admit fast exhaustive search
 In Proceedings of the 22nd Annual IEEE Symposium on Logic In Computer Science
, 2007
"... Abstract. Perhaps surprisingly, there are infinite sets that admit mechanical exhaustive search in finite time. We investigate three related questions: What kinds of infinite sets admit mechanical exhaustive search in finite time? How do we systematically build such sets? How fast can exhaustive sea ..."
Abstract

Cited by 13 (8 self)
 Add to MetaCart
Abstract. Perhaps surprisingly, there are infinite sets that admit mechanical exhaustive search in finite time. We investigate three related questions: What kinds of infinite sets admit mechanical exhaustive search in finite time? How do we systematically build such sets? How fast can exhaustive search over infinite sets be performed? Keywords. Highertype computability and complexity, Kleene–Kreisel functionals, PCF, Haskell, topology. 1.
A Study of Semantics, Types, and Languages for Databases and Object Oriented Programming
, 1989
"... The purpose of this thesis is to investigate a type system for databases and objectoriented programming and to design a statically typed programming language for these applications. Such a language should ideally have a static type system that supports: • polymorphism and static type inference, • r ..."
Abstract

Cited by 8 (0 self)
 Add to MetaCart
The purpose of this thesis is to investigate a type system for databases and objectoriented programming and to design a statically typed programming language for these applications. Such a language should ideally have a static type system that supports: • polymorphism and static type inference, • rich data structures and operations to represent various data models for databases including the relational model and more recent complex object models, • central features of objectoriented programming including user definable class hierarchies, multiple inheritance, and data abstraction, • the notion of extents and objectidentities for objectoriented databases. Without a proper formalism, it is not obvious that the construction of such a type system is possible. This thesis attempts to construct one such formalism and proposes a programming language that uniformly integrate all of the above features. The specific contributions of this thesis include: • A simple semantics for ML polymorphism and axiomatization of the equational theory of ML. • A uniform generalization of the relational model to arbitrary complex database objects that
Density and Choice for Total Continuous Functionals
 About and Around Georg Kreisel
, 1996
"... this paper is to give complete proofs of the density theorem and the choice principle for total continuous functionals in the natural and concrete context of the partial continuous functionals [Ers77], essentially by specializing more general treatments in the literature. The proofs obtained are rel ..."
Abstract

Cited by 8 (3 self)
 Add to MetaCart
this paper is to give complete proofs of the density theorem and the choice principle for total continuous functionals in the natural and concrete context of the partial continuous functionals [Ers77], essentially by specializing more general treatments in the literature. The proofs obtained are relatively short and hopefully perspicious, and may contribute to redirect attention to the fundamental questions Kreisel originally was interested in. Obviously this work owes much to other sources. In particular I have made use of work by Scott [Sco82] (whose notion of an information system is taken as a basis to introduce domains), Roscoe [Ros87], Larsen and Winskel [LW84] and Berger [Ber93]. The paper is organized as follows. Section 1 treats information systems, and in section 2 it is shown that the partial orders defined by them are exactly the (Scott) domains with countable basis. Section 3 gives a characterization of the continuous functions between domains, in terms of approximable mappings. In section 4 cartesian products and function spaces of domains and information systems are introduced. In section 5 the partial and total continuous functionals are defined. Section 6 finally contains the proofs of the two theorems above; it will be clear that the same proofs also yield effective versions of these theorems.