Results 1  10
of
204
Compositional Model Checking
, 1999
"... We describe a method for reducing the complexity of temporal logic model checking in systems composed of many parallel processes. The goal is to check properties of the components of a system and then deduce global properties from these local properties. The main difficulty with this type of approac ..."
Abstract

Cited by 2407 (62 self)
 Add to MetaCart
We describe a method for reducing the complexity of temporal logic model checking in systems composed of many parallel processes. The goal is to check properties of the components of a system and then deduce global properties from these local properties. The main difficulty with this type of approach is that local properties are often not preserved at the global level. We present a general framework for using additional interface processes to model the environment for a component. These interface processes are typically much simpler than the full environment of the component. By composing a component with its interface processes and then checking properties of this composition, we can guarantee that these properties will be preserved at the global level. We give two example compositional systems based on the logic CTL*.
Dynamic Bayesian Networks: Representation, Inference and Learning
, 2002
"... Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and biosequence analysis, and KFMs have bee ..."
Abstract

Cited by 564 (3 self)
 Add to MetaCart
Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and biosequence analysis, and KFMs have been used for problems ranging from tracking planes and missiles to predicting the economy. However, HMMs
and KFMs are limited in their “expressive power”. Dynamic Bayesian Networks (DBNs) generalize HMMs by allowing the state space to be represented in factored form, instead of as a single discrete random variable. DBNs generalize KFMs by allowing arbitrary probability distributions, not just (unimodal) linearGaussian. In this thesis, I will discuss how to represent many different kinds of models as DBNs, how to perform exact and approximate inference in DBNs, and how to learn DBN models from sequential data.
In particular, the main novel technical contributions of this thesis are as follows: a way of representing
Hierarchical HMMs as DBNs, which enables inference to be done in O(T) time instead of O(T 3), where T is the length of the sequence; an exact smoothing algorithm that takes O(log T) space instead of O(T); a simple way of using the junction tree algorithm for online inference in DBNs; new complexity bounds on exact online inference in DBNs; a new deterministic approximate inference algorithm called factored frontier; an analysis of the relationship between the BK algorithm and loopy belief propagation; a way of
applying RaoBlackwellised particle filtering to DBNs in general, and the SLAM (simultaneous localization
and mapping) problem in particular; a way of extending the structural EM algorithm to DBNs; and a variety of different applications of DBNs. However, perhaps the main value of the thesis is its catholic presentation of the field of sequential data modelling.
DecisionTheoretic Planning: Structural Assumptions and Computational Leverage
 JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH
, 1999
"... Planning under uncertainty is a central problem in the study of automated sequential decision making, and has been addressed by researchers in many different fields, including AI planning, decision analysis, operations research, control theory and economics. While the assumptions and perspectives ..."
Abstract

Cited by 417 (4 self)
 Add to MetaCart
Planning under uncertainty is a central problem in the study of automated sequential decision making, and has been addressed by researchers in many different fields, including AI planning, decision analysis, operations research, control theory and economics. While the assumptions and perspectives adopted in these areas often differ in substantial ways, many planning problems of interest to researchers in these fields can be modeled as Markov decision processes (MDPs) and analyzed using the techniques of decision theory. This paper presents an overview and synthesis of MDPrelated methods, showing how they provide a unifying framework for modeling many classes of planning problems studied in AI. It also describes structural properties of MDPs that, when exhibited by particular classes of problems, can be exploited in the construction of optimal or approximately optimal policies or plans. Planning problems commonly possess structure in the reward and value functions used to de...
SPUDD: Stochastic planning using decision diagrams
 In Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence
, 1999
"... Recently, structured methods for solving factored Markov decisions processes (MDPs) with large state spaces have been proposed recently to allow dynamic programming to be applied without the need for complete state enumeration. We propose and examine a new value iteration algorithm for MDPs that use ..."
Abstract

Cited by 178 (17 self)
 Add to MetaCart
Recently, structured methods for solving factored Markov decisions processes (MDPs) with large state spaces have been proposed recently to allow dynamic programming to be applied without the need for complete state enumeration. We propose and examine a new value iteration algorithm for MDPs that uses algebraic decision diagrams (ADDs) to represent value functions and policies, assuming an ADD input representation of the MDP. Dynamic programming is implemented via ADD manipulation. We demonstrate our method on a class of large MDPs (up to 63 million states) and show that significant gains can be had when compared to treestructured representations (with up to a thirtyfold reduction in the number of nodes required to represent optimal value functions). 1
Stochastic Dynamic Programming with Factored Representations
, 1997
"... Markov decision processes(MDPs) have proven to be popular models for decisiontheoretic planning, but standard dynamic programming algorithms for solving MDPs rely on explicit, statebased specifications and computations. To alleviate the combinatorial problems associated with such methods, we propo ..."
Abstract

Cited by 145 (10 self)
 Add to MetaCart
Markov decision processes(MDPs) have proven to be popular models for decisiontheoretic planning, but standard dynamic programming algorithms for solving MDPs rely on explicit, statebased specifications and computations. To alleviate the combinatorial problems associated with such methods, we propose new representational and computational techniques for MDPs that exploit certain types of problem structure. We use dynamic Bayesian networks (with decision trees representing the local families of conditional probability distributions) to represent stochastic actions in an MDP, together with a decisiontree representation of rewards. Based on this representation, we develop versions of standard dynamic programming algorithms that directly manipulate decisiontree representations of policies and value functions. This generally obviates the need for statebystate computation, aggregating states at the leaves of these trees and requiring computations only for each aggregate state. The key to these algorithms is a decisiontheoretic generalization of classic regression analysis, in which we determine the features relevant to predicting expected value. We demonstrate the method empirically on several planning problems,
Probabilistic Symbolic Model Checking with PRISM: A Hybrid Approach
 International Journal on Software Tools for Technology Transfer (STTT
, 2002
"... In this paper we introduce PRISM, a probabilistic model checker, and describe the ecient symbolic techniques we have developed during its implementation. PRISM is a tool for analysing probabilistic systems. It supports three models: discretetime Markov chains, continuoustime Markov chains and ..."
Abstract

Cited by 137 (26 self)
 Add to MetaCart
In this paper we introduce PRISM, a probabilistic model checker, and describe the ecient symbolic techniques we have developed during its implementation. PRISM is a tool for analysing probabilistic systems. It supports three models: discretetime Markov chains, continuoustime Markov chains and Markov decision processes. Analysis is performed through model checking speci cations in the probabilistic temporal logics PCTL and CSL. Motivated by the success of model checkers such as SMV, which use BDDs (binary decision diagrams), we have developed an implementation of PCTL and CSL model checking based on MTBDDs (multiterminal BDDs) and BDDs. Existing work in this direction has been hindered by the generally poor performance of MTBDDbased numerical computation, which is often substantially slower than explicit methods using sparse matrices. We present a novel hybrid technique which combines aspects of symbolic and explicit approaches to overcome these performance problems. For typical examples, we achieve orders of magnitude speedup compared to MTBDDs and are able to almost match the speed of sparse matrices whilst maintaining considerable space savings.
Approximate symbolic model checking of continuoustime Markov chains (Extended Abstract)
, 1999
"... . This paper presents a symbolic model checking algorithm for continuoustime Markov chains for an extension of the continuous stochastic logic CSL of Aziz et al [1]. The considered logic contains a timebounded untiloperator and a novel operator to express steadystate probabilities. We show that t ..."
Abstract

Cited by 124 (21 self)
 Add to MetaCart
. This paper presents a symbolic model checking algorithm for continuoustime Markov chains for an extension of the continuous stochastic logic CSL of Aziz et al [1]. The considered logic contains a timebounded untiloperator and a novel operator to express steadystate probabilities. We show that the model checking problem for this logic reduces to a system of linear equations (for unbounded until and the steady stateoperator) and a Volterra integral equation system for timebounded until. We propose a symbolic approximate method for solving the integrals using MTDDs (multiterminal decision diagrams), a generalisation of MTBDDs. These new structures are suitable for numerical integration using quadrature formulas based on equallyspaced abscissas, like trapezoidal, Simpson and Romberg integration schemes. 1 Introduction The mechanised verification of a given (usually) finitestate model against a property expressed in some temporal logic is known as model checking. For probabilistic...
Binary Decision Diagrams and Beyond: Enabling Technologies for Formal Verification
, 1995
"... Ordered Binary Decision Diagrams (OBDDs) have found widespread use in CAD applications such as formal verification, logic synthesis, and test generation. OBDDs represent Boolean functions in a form that is both canonical and compact for many practical cases. They can be generated and manipulated by ..."
Abstract

Cited by 105 (0 self)
 Add to MetaCart
Ordered Binary Decision Diagrams (OBDDs) have found widespread use in CAD applications such as formal verification, logic synthesis, and test generation. OBDDs represent Boolean functions in a form that is both canonical and compact for many practical cases. They can be generated and manipulated by efficient graph algorithms. Researchers have found that many tasks can be expressed as series of operations on Boolean functions, making them candidates for OBDDbased methods. The success of OBDDs has inspired efforts to improve their efficiency and to expand their range of applicability. Techniques have been discovered to make the representation more compact and to represent other classes of functions. This has led to improved performance on existing OBDD applications, as well as enabled new classes of problems to be solved. This paper provides an overview of the state of the art in graphbased function representations. We focus on several recent advances of particular importance for forma...
Verification of Arithmetic Functions with Binary Moment Diagrams
 IN DESIGN AUTOMATION CONF
, 1994
"... Binary Moment Diagrams (BMDs) provide a canonical representations for linear functions similar to the way Binary Decision Diagrams (BDDs) represent Boolean functions. Within the class of linear functions, we can embed arbitary functions from Boolean variables to real, rational, or integer values. BM ..."
Abstract

Cited by 97 (6 self)
 Add to MetaCart
Binary Moment Diagrams (BMDs) provide a canonical representations for linear functions similar to the way Binary Decision Diagrams (BDDs) represent Boolean functions. Within the class of linear functions, we can embed arbitary functions from Boolean variables to real, rational, or integer values. BMDs can thus model the functionality of data path circuits operating over word level data. Many important functions, including integer multiplication, that cannot be represented efficiently at the bit level with BDDs have simple representations at the word level with BMDs. Furthermore, BMDs can represent Boolean functions with around the same complexity as BDDs. We propose
Verification of Arithmetic Circuits with Binary Moment Diagrams
 IN PROCEEDINGS OF THE 32ND ACM/IEEE DESIGN AUTOMATION CONFERENCE
, 1995
"... Binary Moment Diagrams (BMDs) provide a canonical representations for linear functions similar to the way Binary Decision Diagrams (BDDs) represent Boolean functions. Within the class of linear functions, we can embed arbitrary functions from Boolean variables to integer values. BMDs can thus model ..."
Abstract

Cited by 93 (10 self)
 Add to MetaCart
Binary Moment Diagrams (BMDs) provide a canonical representations for linear functions similar to the way Binary Decision Diagrams (BDDs) represent Boolean functions. Within the class of linear functions, we can embed arbitrary functions from Boolean variables to integer values. BMDs can thus model the functionality of data path circuits operating over wordlevel data. Many important functions, including integer multiplication, that cannot be represented efficiently at the bit level with BDDs have simple representations at the word level with BMDs. Furthermore, BMDs can represent Boolean functions with around the same complexity as BDDs. We propose a hierarchical approach to verifying arithmetic circuits, wherecomponentmodulesare first shownto implement their wordlevel specifications. The overall circuit functionality is then verified by composing the component functions and comparing the result to the wordlevel circuit specification. Multipliers with word sizes of up to 256 bits hav...