Results 1  10
of
144
Capacity Limits of MIMO Channels
 IEEE J. SELECT. AREAS COMMUN
, 2003
"... We provide an overview of the extensive recent results on the Shannon capacity of singleuser and multiuser multipleinput multipleoutput (MIMO) channels. Although enormous capacity gains have been predicted for such channels, these predictions are based on somewhat unrealistic assumptions about t ..."
Abstract

Cited by 217 (10 self)
 Add to MetaCart
We provide an overview of the extensive recent results on the Shannon capacity of singleuser and multiuser multipleinput multipleoutput (MIMO) channels. Although enormous capacity gains have been predicted for such channels, these predictions are based on somewhat unrealistic assumptions about the underlying timevarying channel model and how well it can be tracked at the receiver, as well as at the transmitter. More realistic assumptions can dramatically impact the potential capacity gains of MIMO techniques. For timevarying MIMO channels there are multiple Shannon theoretic capacity definitions and, for each definition, different correlation models and channel information assumptions that we consider. We first provide a comprehensive summary of ergodic and capacity versus outage results for singleuser MIMO channels. These results indicate that the capacity gain obtained from multiple antennas heavily depends
Duality, achievable rates, and sumrate capacity of Gaussian MIMO broadcast channels
 IEEE TRANS. INFORM. THEORY
, 2003
"... We consider a multiuser multipleinput multipleoutput (MIMO) Gaussian broadcast channel (BC), where the transmitter and receivers have multiple antennas. Since the MIMO BC is in general a nondegraded BC, its capacity region remains an unsolved problem. In this paper, we establish a duality between ..."
Abstract

Cited by 210 (19 self)
 Add to MetaCart
We consider a multiuser multipleinput multipleoutput (MIMO) Gaussian broadcast channel (BC), where the transmitter and receivers have multiple antennas. Since the MIMO BC is in general a nondegraded BC, its capacity region remains an unsolved problem. In this paper, we establish a duality between what is termed the “dirty paper” achievable region (the Caire–Shamai achievable region) for the MIMO BC and the capacity region of the MIMO multipleaccess channel (MAC), which is easy to compute. Using this duality, we greatly reduce the computational complexity required for obtaining the dirty paper achievable region for the MIMO BC. We also show that the dirty paper achievable region achieves the sumrate capacity of the MIMO BC by establishing that the maximum sum rate of this region equals an upper bound on the sum rate of the MIMO BC.
Sum capacity of the vector Gaussian broadcast channel and uplinkdownlink duality
 IEEE Trans. on Inform. Theory
, 1912
"... We characterize the sum capacity of the vector Gaussian broadcast channel by showing that the existing inner bound of Marton and the existing upper bound of Sato are tight for this channel. We exploit an intimate fourway connection between the vector broadcast channel, the corresponding pointtopo ..."
Abstract

Cited by 175 (2 self)
 Add to MetaCart
We characterize the sum capacity of the vector Gaussian broadcast channel by showing that the existing inner bound of Marton and the existing upper bound of Sato are tight for this channel. We exploit an intimate fourway connection between the vector broadcast channel, the corresponding pointtopoint channel (where the receivers can cooperate), the multiple access channel (where the role of transmitters and receivers are reversed), and the corresponding pointtopoint channel (where the transmitters can cooperate). 1
The capacity region of the Gaussian multipleinput multipleoutput broadcast channel
 IEEE Trans. Inf. Theory
, 2006
"... (MIMO) broadcast channel (BC) is considered. The dirtypaper coding (DPC) rate region is shown to coincide with the capacity region. To that end, a new notion of an enhanced broadcast channel is introduced and is used jointly with the entropy power inequality, to show that a superposition of Gaussia ..."
Abstract

Cited by 156 (3 self)
 Add to MetaCart
(MIMO) broadcast channel (BC) is considered. The dirtypaper coding (DPC) rate region is shown to coincide with the capacity region. To that end, a new notion of an enhanced broadcast channel is introduced and is used jointly with the entropy power inequality, to show that a superposition of Gaussian codes is optimal for the degraded vector broadcast channel and that DPC is optimal for the nondegraded case. Furthermore, the capacity region is characterized under a wide range of input constraints, accounting, as special cases, for the total power and the perantenna power constraints. Index Terms—Broadcast channel, capacity region, dirtypaper coding (DPC), enhanced channel, entropy power inequality, Minkowski’s inequality, multipleantenna. I.
A VectorPerturbation technique for NearCapacity . . .
 IEEE TRANS. COMMUN
, 2005
"... Recent theoretical results describing the sum capacity when using multiple antennas to communicate with multiple users in a known rich scattering environment have not yet been followed with practical transmission schemes that achieve this capacity. We introduce a simple encoding algorithm that achi ..."
Abstract

Cited by 131 (3 self)
 Add to MetaCart
Recent theoretical results describing the sum capacity when using multiple antennas to communicate with multiple users in a known rich scattering environment have not yet been followed with practical transmission schemes that achieve this capacity. We introduce a simple encoding algorithm that achieves nearcapacity at sum rates of tens of bits/channel use. The algorithm is a variation on channel inversion that regularizes the inverse and uses a “sphere encoder ” to perturb the data to reduce the power of the transmitted signal. This paper is comprised of two parts. In this first part, we show that while the sum capacity grows linearly with the minimum of the number of antennas and users, the sum rate of channel inversion does not. This poor performance is due to the large spread in the singular values of the channel matrix. We introduce regularization to improve the condition of the inverse and maximize the signaltointerferenceplusnoise ratio at the receivers. Regularization enables linear growth and works especially well at low signaltonoise ratios (SNRs), but as we show in the second part, an additional step is needed to achieve nearcapacity performance at all SNRs.
Zeroforcing methods for downlink spatial multiplexing in multiuser MIMO channels
 IEEE Trans. Signal Processing
, 2004
"... Abstract—The use of spacedivision multiple access (SDMA) in the downlink of a multiuser multipleinput, multipleoutput (MIMO) wireless communications network can provide a substantial gain in system throughput. The challenge in such multiuser systems is designing transmit vectors while considering ..."
Abstract

Cited by 117 (4 self)
 Add to MetaCart
Abstract—The use of spacedivision multiple access (SDMA) in the downlink of a multiuser multipleinput, multipleoutput (MIMO) wireless communications network can provide a substantial gain in system throughput. The challenge in such multiuser systems is designing transmit vectors while considering the cochannel interference of other users. Typical optimization problems of interest include the capacity problem—maximizing the sum information rate subject to a power constraint—or the power control problem—minimizing transmitted power such that a certain qualityofservice metric for each user is met. Neither of these problems possess closedform solutions for the general multiuser MIMO channel, but the imposition of certain constraints can lead to closedform solutions. This paper presents two such constrained solutions. The first, referred to as “blockdiagonalization,” is a generalization of channel inversion when there are multiple antennas at each receiver. It is easily adapted to optimize for either maximum transmission rate or minimum power and approaches the optimal solution at high SNR. The second, known as “successive optimization, ” is an alternative method for solving the power minimization problem one user at a time, and it yields superior results in some (e.g., low SNR) situations. Both of these algorithms are limited to cases where the transmitter has more antennas than all receive antennas combined. In order to accommodate more general scenarios, we also propose a framework for coordinated transmitterreceiver processing that generalizes the two algorithms to cases involving more receive than transmit antennas. While the proposed algorithms are suboptimal, they lead to simpler transmitter and receiver structures and allow for a reasonable tradeoff between performance and complexity. Index Terms—Antenna arrays, array signal processing, MIMO systems, signal design, space division multiaccess (SDMA), wireless LAN. I.
On the optimality of multiantenna broadcast scheduling using zeroforcing beamforming
 IEEE J. SELECT. AREAS COMMUN
, 2006
"... Although the capacity of multipleinput/multipleoutput (MIMO) broadcast channels (BCs) can be achieved by dirty paper coding (DPC), it is difficult to implement in practical systems. This paper investigates if, for a large number of users, simpler schemes can achieve the same performance. Specifica ..."
Abstract

Cited by 116 (5 self)
 Add to MetaCart
Although the capacity of multipleinput/multipleoutput (MIMO) broadcast channels (BCs) can be achieved by dirty paper coding (DPC), it is difficult to implement in practical systems. This paper investigates if, for a large number of users, simpler schemes can achieve the same performance. Specifically, we show that a zeroforcing beamforming (ZFBF) strategy, while generally suboptimal, can achieve the same asymptotic sum capacity as that of DPC, as the number of users goes to infinity. In proving this asymptotic result, we provide an algorithm for determining which users should be active under ZFBF. These users are semiorthogonal to one another and can be grouped for simultaneous transmission to enhance the throughput of scheduling algorithms. Based on the user grouping, we propose and compare two fair scheduling schemes in roundrobin ZFBF and proportionalfair ZFBF. We provide numerical results to confirm the optimality of ZFBF and to compare the performance of ZFBF and proposed fair scheduling schemes with that of various MIMO BC strategies.
MIMO broadcast channels with finite rate feedback
 IEEE Trans. on Inform. Theory
, 2006
"... Multiple transmit antennas in a downlink channel can provide tremendous capacity (i.e. multiplexing) gains, even when receivers have only single antennas. However, receiver and transmitter channel state information is generally required. In this paper, a system where each receiver has perfect channe ..."
Abstract

Cited by 94 (10 self)
 Add to MetaCart
Multiple transmit antennas in a downlink channel can provide tremendous capacity (i.e. multiplexing) gains, even when receivers have only single antennas. However, receiver and transmitter channel state information is generally required. In this paper, a system where each receiver has perfect channel knowledge, but the transmitter only receives quantized information regarding the channel instantiation is analyzed. The well known zero forcing transmission technique is considered, and simple expressions for the throughput degradation due to finite rate feedback are derived. A key finding is that the feedback rate per mobile must be increased linearly with the SNR (in dB) in order to achieve the full multiplexing gain, which is in sharp contrast to pointtopoint MIMO systems in which it is not necessary to increase the feedback rate as a function of the SNR. I.
Sum power iterative waterfilling for multiantenna Gaussian broadcast channels
 IEEE Trans. Inform. Theory
, 2005
"... In this paper we consider the problem of maximizing sum rate of a multipleantenna Gaussian broadcast channel. It was recently found that dirty paper coding is capacity achieving for this channel. In order to achieve capacity, the optimal transmission policy (i.e. the optimal transmit covariance str ..."
Abstract

Cited by 82 (16 self)
 Add to MetaCart
In this paper we consider the problem of maximizing sum rate of a multipleantenna Gaussian broadcast channel. It was recently found that dirty paper coding is capacity achieving for this channel. In order to achieve capacity, the optimal transmission policy (i.e. the optimal transmit covariance structure) given the channel conditions and power constraint must be found. However, obtaining the optimal transmission policy when employing dirty paper coding is a computationally complex nonconvex problem. We use duality to transform this problem into a wellstructured convex multipleaccess channel problem. We exploit the structure of this problem and derive simple and fast iterative algorithms that provide the optimum transmission policies for the multipleaccess channel, which can easily be mapped to the optimal broadcast channel policies.