Results 1  10
of
28
On the Hardness of Graph Isomorphism
 SIAM J. COMPUT
"... We show that the graph isomorphism problem is hard under DLOGTIME uniform AC0 manyone reductions for the complexity classes NL, PL (probabilistic logarithmic space) for every logarithmic space modular class ModkL and for the class DET of problems NC¹ reducible to the determinant. These are the stro ..."
Abstract

Cited by 44 (1 self)
 Add to MetaCart
We show that the graph isomorphism problem is hard under DLOGTIME uniform AC0 manyone reductions for the complexity classes NL, PL (probabilistic logarithmic space) for every logarithmic space modular class ModkL and for the class DET of problems NC¹ reducible to the determinant. These are the strongest known hardness results for the graph isomorphism problem and imply a randomized logarithmic space reduction from the perfect matching problem to graph isomorphism. We also investigate hardness results for the graph automorphism problem.
THE ISOMORPHISM PROBLEM FOR PLANAR 3CONNECTED GRAPHS IS IN UNAMBIGUOUS LOGSPACE
, 2008
"... The isomorphism problem for planar graphs is known to be efficiently solvable. For planar 3connected graphs, the isomorphism problem can be solved by efficient parallel algorithms, it is in the class AC¹. In this paper we improve the upper bound for planar 3connected graphs to unambiguous logspace ..."
Abstract

Cited by 13 (5 self)
 Add to MetaCart
The isomorphism problem for planar graphs is known to be efficiently solvable. For planar 3connected graphs, the isomorphism problem can be solved by efficient parallel algorithms, it is in the class AC¹. In this paper we improve the upper bound for planar 3connected graphs to unambiguous logspace, in fact to UL ∩ coUL. As a consequence of our method we get that the isomorphism problem for oriented graphs is in NL. We also show that the problems are hard for L.
Planar graph isomorphism is in logspace
 In IEEE Conference on Computational Complexity
, 2009
"... Abstract. We show that the isomorphism of 3connected planar graphs can be decided in deterministic logspace. This improves the previously known bound UL ∩ coUL of [13]. 1 ..."
Abstract

Cited by 13 (3 self)
 Add to MetaCart
(Show Context)
Abstract. We show that the isomorphism of 3connected planar graphs can be decided in deterministic logspace. This improves the previously known bound UL ∩ coUL of [13]. 1
A Logspace Algorithm for Partial 2Tree canonization
, 2008
"... We show that partial 2tree canonization, and hence isomorphism testing for partial 2trees, is in deterministic logspace. Our algorithm involves two steps: (a) We exploit the “tree of cycles ” property of biconnected partial 2trees to canonize them in logspace. (b) We analyze Lindell’s tree cano ..."
Abstract

Cited by 8 (1 self)
 Add to MetaCart
We show that partial 2tree canonization, and hence isomorphism testing for partial 2trees, is in deterministic logspace. Our algorithm involves two steps: (a) We exploit the “tree of cycles ” property of biconnected partial 2trees to canonize them in logspace. (b) We analyze Lindell’s tree canonization algorithm and show that canonizing general partial 2trees is also in logspace, using the algorithm to canonize biconnected partial 2trees.
Algorithm and Experiments in Testing Planar Graphs for Isomorphism
, 2004
"... We give an algorithm for isomorphism testing of planar graphs suitable for practical implementation. The algorithm is based on the decomposition of a graph into biconnected components and further into SPQRtrees. We provide a proof of the algorithm’s correctness and a complexity analysis. We determi ..."
Abstract

Cited by 8 (0 self)
 Add to MetaCart
We give an algorithm for isomorphism testing of planar graphs suitable for practical implementation. The algorithm is based on the decomposition of a graph into biconnected components and further into SPQRtrees. We provide a proof of the algorithm’s correctness and a complexity analysis. We determine the conditions in which the implemented algorithm outperforms other graph matchers, which do not impose topological restrictions on graphs. We report experiments with our planar graph matcher tested against McKay’s, Ullmann’s, and SUBDUE’s (a graphbased data mining system) graph matchers.
Colored Hypergraph Isomorphism is Fixed Paramter Tractable
 Electronic Colloquium on Computation Complexity
, 2009
"... We describe a fixed parameter tractable (fpt) algorithm for Colored Hypergraph Isomorphism which has running time 2 O(b) N O(1) , where the parameter b is the maximum size of the color classes of the given hypergraphs and N is the input size. We also describe fpt algorithms for certain permutation g ..."
Abstract

Cited by 7 (1 self)
 Add to MetaCart
(Show Context)
We describe a fixed parameter tractable (fpt) algorithm for Colored Hypergraph Isomorphism which has running time 2 O(b) N O(1) , where the parameter b is the maximum size of the color classes of the given hypergraphs and N is the input size. We also describe fpt algorithms for certain permutation group problems that are used as subroutines in our algorithm. Fixed parameter tractability, fpt algorithms, graph isomorphism, com
On graph isomorphism for restricted graph classes
 In
, 2006
"... Abstract. Graph isomorphism (GI) is one of the few remaining problems in NP whose complexity status couldn’t be solved by classifying it as being either NPcomplete or solvable in P. Nevertheless, efficient (polynomialtime or even NC) algorithms for restricted versions of GI have been found over th ..."
Abstract

Cited by 7 (1 self)
 Add to MetaCart
(Show Context)
Abstract. Graph isomorphism (GI) is one of the few remaining problems in NP whose complexity status couldn’t be solved by classifying it as being either NPcomplete or solvable in P. Nevertheless, efficient (polynomialtime or even NC) algorithms for restricted versions of GI have been found over the last four decades. Depending on the graph class, the design and analysis of algorithms for GI use tools from various fields, such as combinatorics, algebra and logic. In this paper, we collect several complexity results on graph isomorphism testing and related algorithmic problems for restricted graph classes from the literature. Further, we provide some new complexity bounds (as well as easier proofs of some known results) and highlight some open questions. 1
A bisimulation approach to verification of molecular implementations of formal chemical reaction networks
, 2012
"... ..."
Bounded Color Multiplicity Graph Isomorphism is in the #L Hierarchy
 ELECTRONIC COLLOQUIUM ON COMPUTATIONAL COMPLEXITY, REPORT NO. 121 (2004)
, 2004
"... In this paper we study the complexity of Bounded Color Multiplicity Graph Isomorphism BCGIb: the input is a pair of vertexcolored graphs such that the number of vertices of a given color in an input graph is bounded by b. We show that BCGIb is in the #L hierarchy (more precisely, the ModkL hierarch ..."
Abstract

Cited by 5 (2 self)
 Add to MetaCart
(Show Context)
In this paper we study the complexity of Bounded Color Multiplicity Graph Isomorphism BCGIb: the input is a pair of vertexcolored graphs such that the number of vertices of a given color in an input graph is bounded by b. We show that BCGIb is in the #L hierarchy (more precisely, the ModkL hierarchy for some constant k depending on b). Combined with the fact that Bounded Color Multiplicity Graph Isomorphism is logspace manyone hard for every set in the ModkL hierarchy for any constant k, we get a tight classification of the problem using logspacebounded counting classes.