Results 11  20
of
1,783
Image Segmentation by Data Driven Markov Chain Monte Carlo
, 2001
"... 1 This paper presents a computational paradigm called Data Driven Markov Chain Monte Carlo (DDMCMC) for image segmentation in the Bayesian statistical framework. The paper contributes to image segmentation in three aspects. Firstly, it designs eective and well balanced Markov Chain dynamics to expl ..."
Abstract

Cited by 224 (32 self)
 Add to MetaCart
1 This paper presents a computational paradigm called Data Driven Markov Chain Monte Carlo (DDMCMC) for image segmentation in the Bayesian statistical framework. The paper contributes to image segmentation in three aspects. Firstly, it designs eective and well balanced Markov Chain dynamics to explore the solution space and makes the split and merge process reversible at a middle level vision formulation. Thus it achieves globally optimal solution independent of initial segmentations. Secondly, instead of computing a single maximum a posteriori solution, it proposes a mathematical principle for computing multiple distinct solutions to incorporates intrinsic ambiguities in image segmentation. A kadventurers algorithm is proposed for extracting distinct multiple solutions from the Markov chain sequence. Thirdly, it utilizes datadriven (bottomup) techniques, such as clustering and edge detection, to compute importance proposal probabilities, which eectively drive the Markov chain dynamics and achieve tremendous speedup in comparison to traditional jumpdiusion method[4]. Thus DDMCMC paradigm provides a unifying framework where the role of existing segmentation algorithms, such as, edge detection, clustering, region growing, splitmerge, SNAKEs, region competition, are revealed as either realizing Markov chain dynamics or computing importance proposal probabilities. We report some results on color and grey level image segmentation in this paper and refer to a detailed report and a web site for extensive discussion. 1 Motivation and
An Introduction to MCMC for Machine Learning
, 2003
"... This purpose of this introductory paper is threefold. First, it introduces the Monte Carlo method with emphasis on probabilistic machine learning. Second, it reviews the main building blocks of modern Markov chain Monte Carlo simulation, thereby providing and introduction to the remaining papers of ..."
Abstract

Cited by 222 (2 self)
 Add to MetaCart
This purpose of this introductory paper is threefold. First, it introduces the Monte Carlo method with emphasis on probabilistic machine learning. Second, it reviews the main building blocks of modern Markov chain Monte Carlo simulation, thereby providing and introduction to the remaining papers of this special issue. Lastly, it discusses new interesting research horizons.
Being Bayesian about network structure
 Machine Learning
, 2000
"... Abstract. In many multivariate domains, we are interested in analyzing the dependency structure of the underlying distribution, e.g., whether two variables are in direct interaction. We can represent dependency structures using Bayesian network models. To analyze a given data set, Bayesian model sel ..."
Abstract

Cited by 202 (5 self)
 Add to MetaCart
Abstract. In many multivariate domains, we are interested in analyzing the dependency structure of the underlying distribution, e.g., whether two variables are in direct interaction. We can represent dependency structures using Bayesian network models. To analyze a given data set, Bayesian model selection attempts to find the most likely (MAP) model, and uses its structure to answer these questions. However, when the amount of available data is modest, there might be many models that have nonnegligible posterior. Thus, we want compute the Bayesian posterior of a feature, i.e., the total posterior probability of all models that contain it. In this paper, we propose a new approach for this task. We first show how to efficiently compute a sum over the exponential number of networks that are consistent with a fixed order over network variables. This allows us to compute, for a given order, both the marginal probability of the data and the posterior of a feature. We then use this result as the basis for an algorithm that approximates the Bayesian posterior of a feature. Our approach uses a Markov Chain Monte Carlo (MCMC) method, but over orders rather than over network structures. The space of orders is smaller and more regular than the space of structures, and has much a smoother posterior “landscape”. We present empirical results on synthetic and reallife datasets that compare our approach to full model averaging (when possible), to MCMC over network structures, and to a nonBayesian bootstrap approach.
Using simulation methods for Bayesian econometric models: Inference, development and communication
 Econometric Review
, 1999
"... This paper surveys the fundamental principles of subjective Bayesian inference in econometrics and the implementation of those principles using posterior simulation methods. The emphasis is on the combination of models and the development of predictive distributions. Moving beyond conditioning on a ..."
Abstract

Cited by 199 (15 self)
 Add to MetaCart
This paper surveys the fundamental principles of subjective Bayesian inference in econometrics and the implementation of those principles using posterior simulation methods. The emphasis is on the combination of models and the development of predictive distributions. Moving beyond conditioning on a fixed number of completely specified models, the paper introduces subjective Bayesian tools for formal comparison of these models with as yet incompletely specified models. The paper then shows how posterior simulators can facilitate communication between investigators (for example, econometricians) on the one hand and remote clients (for example, decision makers) on the other, enabling clients to vary the prior distributions and functions of interest employed by investigators. A theme of the paper is the practicality of subjective Bayesian methods. To this end, the paper describes publicly available software for Bayesian inference, model development, and communication and provides illustrations using two simple econometric models. *This paper was originally prepared for the Australasian meetings of the Econometric Society in Melbourne, Australia,
A Theory of Networks for Approximation and Learning
 Laboratory, Massachusetts Institute of Technology
, 1989
"... Learning an inputoutput mapping from a set of examples, of the type that many neural networks have been constructed to perform, can be regarded as synthesizing an approximation of a multidimensional function, that is solving the problem of hypersurface reconstruction. From this point of view, t ..."
Abstract

Cited by 194 (24 self)
 Add to MetaCart
Learning an inputoutput mapping from a set of examples, of the type that many neural networks have been constructed to perform, can be regarded as synthesizing an approximation of a multidimensional function, that is solving the problem of hypersurface reconstruction. From this point of view, this form of learning is closely related to classical approximation techniques, such as generalized splines and regularization theory. This paper considers the problems of an exact representation and, in more detail, of the approximation of linear and nonlinear mappings in terms of simpler functions of fewer variables. Kolmogorov's theorem concerning the representation of functions of several variables in terms of functions of one variable turns out to be almost irrelevant in the context of networks for learning. Wedevelop a theoretical framework for approximation based on regularization techniques that leads to a class of threelayer networks that we call Generalized Radial Basis Functions (GRBF), since they are mathematically related to the wellknown Radial Basis Functions, mainly used for strict interpolation tasks. GRBF networks are not only equivalent to generalized splines, but are also closely related to pattern recognition methods suchasParzen windows and potential functions and to several neural network algorithms, suchas Kanerva's associative memory,backpropagation and Kohonen's topology preserving map. They also haveaninteresting interpretation in terms of prototypes that are synthesized and optimally combined during the learning stage. The paper introduces several extensions and applications of the technique and discusses intriguing analogies with neurobiological data.
Very Fast Simulated ReAnnealing
, 1989
"... This paper contributes to this methodology by presenting an improvement over previous algorithms. Sections II and III give a short outline of previous Boltzmann annealing (BA) and fast Cauchy fast annealing (FA) algorithms. Section IV presents the new very fast algorithm. Section V enhances this alg ..."
Abstract

Cited by 181 (33 self)
 Add to MetaCart
This paper contributes to this methodology by presenting an improvement over previous algorithms. Sections II and III give a short outline of previous Boltzmann annealing (BA) and fast Cauchy fast annealing (FA) algorithms. Section IV presents the new very fast algorithm. Section V enhances this algorithm with a reannealing modification found to be extremely useful for multidimensional parameterspaces. This method will be referred to here as very fast reannealing (VFR)
Rates of convergence of the Hastings and Metropolis algorithms
 ANNALS OF STATISTICS
, 1996
"... We apply recent results in Markov chain theory to Hastings and Metropolis algorithms with either independent or symmetric candidate distributions, and provide necessary and sufficient conditions for the algorithms to converge at a geometric rate to a prescribed distribution ß. In the independence ca ..."
Abstract

Cited by 163 (13 self)
 Add to MetaCart
We apply recent results in Markov chain theory to Hastings and Metropolis algorithms with either independent or symmetric candidate distributions, and provide necessary and sufficient conditions for the algorithms to converge at a geometric rate to a prescribed distribution ß. In the independence case (in IR k ) these indicate that geometric convergence essentially occurs if and only if the candidate density is bounded below by a multiple of ß; in the symmetric case (in IR only) we show geometric convergence essentially occurs if and only if ß has geometric tails. We also evaluate recently developed computable bounds on the rates of convergence in this context: examples show that these theoretical bounds can be inherently extremely conservative, although when the chain is stochastically monotone the bounds may well be effective.