Results 1  10
of
1,783
Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
 Biometrika
, 1995
"... Markov chain Monte Carlo methods for Bayesian computation have until recently been restricted to problems where the joint distribution of all variables has a density with respect to some xed standard underlying measure. They have therefore not been available for application to Bayesian model determi ..."
Abstract

Cited by 827 (19 self)
 Add to MetaCart
Markov chain Monte Carlo methods for Bayesian computation have until recently been restricted to problems where the joint distribution of all variables has a density with respect to some xed standard underlying measure. They have therefore not been available for application to Bayesian model determination, where the dimensionality of the parameter vector is typically not xed. This article proposes a new framework for the construction of reversible Markov chain samplers that jump between parameter subspaces of di ering dimensionality, which is exible and entirely constructive. It should therefore have wide applicability in model determination problems. The methodology is illustrated with applications to multiple changepoint analysis in one and two dimensions, and toaBayesian comparison of binomial experiments.
NonUniform Random Variate Generation
, 1986
"... Abstract. This is a survey of the main methods in nonuniform random variate generation, and highlights recent research on the subject. Classical paradigms such as inversion, rejection, guide tables, and transformations are reviewed. We provide information on the expected time complexity of various ..."
Abstract

Cited by 620 (21 self)
 Add to MetaCart
Abstract. This is a survey of the main methods in nonuniform random variate generation, and highlights recent research on the subject. Classical paradigms such as inversion, rejection, guide tables, and transformations are reviewed. We provide information on the expected time complexity of various algorithms, before addressing modern topics such as indirectly specified distributions, random processes, and Markov chain methods.
FastSLAM: A Factored Solution to the Simultaneous Localization and Mapping Problem
 In Proceedings of the AAAI National Conference on Artificial Intelligence
, 2002
"... The ability to simultaneously localize a robot and accurately map its surroundings is considered by many to be a key prerequisite of truly autonomous robots. However, few approaches to this problem scale up to handle the very large number of landmarks present in real environments. Kalman filterbase ..."
Abstract

Cited by 447 (10 self)
 Add to MetaCart
The ability to simultaneously localize a robot and accurately map its surroundings is considered by many to be a key prerequisite of truly autonomous robots. However, few approaches to this problem scale up to handle the very large number of landmarks present in real environments. Kalman filterbased algorithms, for example, require time quadratic in the number of landmarks to incorporate each sensor observation. This paper presents FastSLAM, an algorithm that recursively estimates the full posterior distribution over robot pose and landmark locations, yet scales logarithmically with the number of landmarks in the map. This algorithm is based on a factorization of the posterior into a product of conditional landmark distributions and a distribution over robot paths. The algorithm has been run successfully on as many as 50,000 landmarks, environments far beyond the reach of previous approaches. Experimental results demonstrate the advantages and limitations of the FastSLAM algorithm on both simulated and realworld data.
On Bayesian analysis of mixtures with an unknown number of components
 INSTITUTE OF INTERNATIONAL ECONOMICS PROJECT ON INTERNATIONAL COMPETITION POLICY," COM/DAFFE/CLP/TD(94)42
, 1997
"... ..."
A learning algorithm for Boltzmann machines
 Cognitive Science
, 1985
"... The computotionol power of massively parallel networks of simple processing elements resides in the communication bandwidth provided by the hardware connections between elements. These connections con allow a significant fraction of the knowledge of the system to be applied to an instance of a probl ..."
Abstract

Cited by 432 (14 self)
 Add to MetaCart
The computotionol power of massively parallel networks of simple processing elements resides in the communication bandwidth provided by the hardware connections between elements. These connections con allow a significant fraction of the knowledge of the system to be applied to an instance of a problem in o very short time. One kind of computation for which massively porollel networks appear to be well suited is large constraint satisfaction searches, but to use the connections efficiently two conditions must be met: First, a search technique that is suitable for parallel networks must be found. Second, there must be some way of choosing internal representations which allow the preexisting hardware connections to be used efficiently for encoding the constraints in the domain being searched. We describe a generol parallel search method, based on statistical mechanics, and we show how it leads to a general learning rule for modifying the connection strengths so as to incorporate knowledge obout o task domain in on efficient way. We describe some simple examples in which the learning algorithm creates internal representations thot ore demonstrobly the most efficient way of using the preexisting connectivity structure. 1.
Bayesian Density Estimation and Inference Using Mixtures
 Journal of the American Statistical Association
, 1994
"... We describe and illustrate Bayesian inference in models for density estimation using mixtures of Dirichlet processes. These models provide natural settings for density estimation, and are exemplified by special cases where data are modelled as a sample from mixtures of normal distributions. Efficien ..."
Abstract

Cited by 398 (17 self)
 Add to MetaCart
We describe and illustrate Bayesian inference in models for density estimation using mixtures of Dirichlet processes. These models provide natural settings for density estimation, and are exemplified by special cases where data are modelled as a sample from mixtures of normal distributions. Efficient simulation methods are used to approximate various prior, posterior and predictive distributions. This allows for direct inference on a variety of practical issues, including problems of local versus global smoothing, uncertainty about density estimates, assessment of modality, and the inference on the numbers of components. Also, convergence results are established for a general class of normal mixture models. Keywords: Kernel estimation; Mixtures of Dirichlet processes; Multimodality; Normal mixtures; Posterior sampling; Smoothing parameter estimation * Michael D. Escobar is Assistant Professor, Department of Statistics and Department of Preventive Medicine and Biostatistics, University ...
Predictive regressions
 Journal of Financial Economics
, 1999
"... When a rate of return is regressed on a lagged stochastic regressor, such as a dividend yield, the regression disturbance is correlated with the regressor's innovation. The OLS estimator's "nitesample properties, derived here, can depart substantially from the standard regression setting. Bayesian ..."
Abstract

Cited by 257 (16 self)
 Add to MetaCart
When a rate of return is regressed on a lagged stochastic regressor, such as a dividend yield, the regression disturbance is correlated with the regressor's innovation. The OLS estimator's "nitesample properties, derived here, can depart substantially from the standard regression setting. Bayesian posterior distributions for the regression parameters are obtained under speci"cations that di!er with respect to (i) prior beliefs about the autocorrelation of the regressor and (ii) whether the initial observation of the regressor is speci"ed as "xed or stochastic. The posteriors di!er across such speci"cations, and asset allocations in the presence of estimation risk exhibit sensitivity to those
Deterministic Annealing for Clustering, Compression, Classification, Regression, and Related Optimization Problems
 Proceedings of the IEEE
, 1998
"... this paper. Let us place it within the neural network perspective, and particularly that of learning. The area of neural networks has greatly benefited from its unique position at the crossroads of several diverse scientific and engineering disciplines including statistics and probability theory, ph ..."
Abstract

Cited by 248 (11 self)
 Add to MetaCart
this paper. Let us place it within the neural network perspective, and particularly that of learning. The area of neural networks has greatly benefited from its unique position at the crossroads of several diverse scientific and engineering disciplines including statistics and probability theory, physics, biology, control and signal processing, information theory, complexity theory, and psychology (see [45]). Neural networks have provided a fertile soil for the infusion (and occasionally confusion) of ideas, as well as a meeting ground for comparing viewpoints, sharing tools, and renovating approaches. It is within the illdefined boundaries of the field of neural networks that researchers in traditionally distant fields have come to the realization that they have been attacking fundamentally similar optimization problems.
The Markov Chain Monte Carlo method: an approach to approximate counting and integration
, 1996
"... In the area of statistical physics, Monte Carlo algorithms based on Markov chain simulation have been in use for many years. The validity of these algorithms depends crucially on the rate of convergence to equilibrium of the Markov chain being simulated. Unfortunately, the classical theory of stocha ..."
Abstract

Cited by 234 (13 self)
 Add to MetaCart
In the area of statistical physics, Monte Carlo algorithms based on Markov chain simulation have been in use for many years. The validity of these algorithms depends crucially on the rate of convergence to equilibrium of the Markov chain being simulated. Unfortunately, the classical theory of stochastic processes hardly touches on the sort of nonasymptotic analysis required in this application. As a consequence, it had previously not been possible to make useful, mathematically rigorous statements about the quality of the estimates obtained. Within the last ten years, analytical tools have been devised with the aim of correcting this deficiency. As well as permitting the analysis of Monte Carlo algorithms for classical problems in statistical physics, the introduction of these tools has spurred the development of new approximation algorithms for a wider class of problems in combinatorial enumeration and optimization. The “Markov chain Monte Carlo ” method has been applied to a variety of such problems, and often provides the only known efficient (i.e., polynomial time) solution technique.