Results 1 
3 of
3
Spaceefficient planar convex hull algorithms
 Proc. Latin American Theoretical Informatics
, 2002
"... A spaceefficient algorithm is one in which the output is given in the same location as the input and only a small amount of additional memory is used by the algorithm. We describe four spaceefficient algorithms for computing the convex hull of a planar point set. ..."
Abstract

Cited by 20 (1 self)
 Add to MetaCart
A spaceefficient algorithm is one in which the output is given in the same location as the input and only a small amount of additional memory is used by the algorithm. We describe four spaceefficient algorithms for computing the convex hull of a planar point set.
Optimal inplace planar convex hull algorithms
 Proceedings of Latin American Theoretical Informatics (LATIN 2002), volume 2286 of Lecture Notes in Computer Science
, 2002
"... An inplace algorithm is one in which the output is given in the same location as the input and only a small amount of additional memory is used by the algorithm. In this paper we describe three inplace algorithms for computing the convex hull of a planar point set. All three algorithms are optima ..."
Abstract

Cited by 5 (2 self)
 Add to MetaCart
An inplace algorithm is one in which the output is given in the same location as the input and only a small amount of additional memory is used by the algorithm. In this paper we describe three inplace algorithms for computing the convex hull of a planar point set. All three algorithms are optimal, some more so than others...
SpaceEfficient Algorithms for Klee’s Measure Problem
, 2005
"... We give spaceefficient geometric algorithms for three related problems. Given a set of n axisaligned rectangles in the plane, we calculate the area covered by the union of these rectangles (Klee’s measure problem) in O(n 3/2 log n) time with O(√n) extra space. If the input can be destroyed and the ..."
Abstract

Cited by 5 (0 self)
 Add to MetaCart
We give spaceefficient geometric algorithms for three related problems. Given a set of n axisaligned rectangles in the plane, we calculate the area covered by the union of these rectangles (Klee’s measure problem) in O(n 3/2 log n) time with O(√n) extra space. If the input can be destroyed and there are no degenerate cases and input coordinates are all integers, we can solve Klee’s measure problem in O(n log² n) time with O(log² n) extra space. Given a set of n points in the plane, we find the axisaligned unit square that covers the maximum number of points in O(n log³ n) time with O(log² n) extra space.