Results 1 
2 of
2
On the Stability of the Kuramoto Model of Coupled Nonlinear Oscillators
 In Proceedings of the American Control Conference
, 2004
"... We provide a complete analysis of the Kuramoto model of coupled nonlinear oscillators with uncertain natural frequencies and arbitrary interconnection topology. Our work extends and supersedes existing, partial results for the case of an alltoall connected network. Using tools from spectral gra ..."
Abstract

Cited by 58 (8 self)
 Add to MetaCart
We provide a complete analysis of the Kuramoto model of coupled nonlinear oscillators with uncertain natural frequencies and arbitrary interconnection topology. Our work extends and supersedes existing, partial results for the case of an alltoall connected network. Using tools from spectral graph theory and control theory, we prove that for couplings above a critical value all the oscillators synchronize, resulting in convergence of all phase di#erences to a constant value, both in the case of identical natural frequencies as well as uncertain ones. We further explain the behavior of the system as the number of oscillators grows to infinity.
1 On the Stability of the Kuramoto Model of Coupled Nonlinear Oscillators †
, 2005
"... We provide an analysis of the classic Kuramoto model of coupled nonlinear oscillators that goes beyond the existing results for alltoall networks of identical oscillators. Our work is applicable to oscillator networks of arbitrary interconnection topology with uncertain natural frequencies. Using ..."
Abstract
 Add to MetaCart
We provide an analysis of the classic Kuramoto model of coupled nonlinear oscillators that goes beyond the existing results for alltoall networks of identical oscillators. Our work is applicable to oscillator networks of arbitrary interconnection topology with uncertain natural frequencies. Using tools from spectral graph theory and control theory, we prove that for couplings above a critical value, the synchronized state is locally asymptotically stable, resulting in convergence of all phase differences to a constant value, both in the case of identical natural frequencies as well as uncertain ones. We further explain the behavior of the system as the number of oscillators grows to infinity. Over the past decade, considerable attention has been devoted to the problem of coordinated motion of multiple autonomous agents. A variety of disciplines (as diverse as ecology, the social sciences, statistical physics, computer graphics and, indeed, systems and control theory) are developing an understanding of how a group of moving objects (such as flocks of birds, schools of fish, crowds of people [11], [20], or collections of autonomous robots or unmanned