Results 1 
2 of
2
Digital Circuit Optimization via Geometric Programming
 Operations Research
, 2005
"... informs ® doi 10.1287/opre.1050.0254 © 2005 INFORMS This paper concerns a method for digital circuit optimization based on formulating the problem as a geometric program (GP) or generalized geometric program (GGP), which can be transformed to a convex optimization problem and then very efficiently s ..."
Abstract

Cited by 29 (7 self)
 Add to MetaCart
informs ® doi 10.1287/opre.1050.0254 © 2005 INFORMS This paper concerns a method for digital circuit optimization based on formulating the problem as a geometric program (GP) or generalized geometric program (GGP), which can be transformed to a convex optimization problem and then very efficiently solved. We start with a basic gate scaling problem, with delay modeled as a simple resistorcapacitor (RC) time constant, and then add various layers of complexity and modeling accuracy, such as accounting for differing signal fall and rise times, and the effects of signal transition times. We then consider more complex formulations such as robust design over corners, multimode design, statistical design, and problems in which threshold and power supply voltage are also variables to be chosen. Finally, we look at the detailed design of gates and interconnect wires, again using a formulation that is compatible with GP or GGP.
Circuit Optimization via Adjoint Lagrangians
 IEEE INTERNATIONAL CONFERENCE ON COMPUTERAIDED DESIGN
, 1997
"... The circuit tuning problem is best approached by means of gradientbased nonlinear optimization algorithms. For large circuits, gradient computation can be the bottleneck in the optimization procedure. Traditionally, when the number of measurements is large relative to the number of tunable paramete ..."
Abstract

Cited by 6 (3 self)
 Add to MetaCart
The circuit tuning problem is best approached by means of gradientbased nonlinear optimization algorithms. For large circuits, gradient computation can be the bottleneck in the optimization procedure. Traditionally, when the number of measurements is large relative to the number of tunable parameters, the direct method [2] is used to repeatedly solve the associated sensitivity circuit to obtain all the necessary gradients. Likewise, when the parameters outnumber the measurements, the adjoint method [1] is employed to solve the adjoint circuit repeatedly for each measurement to compute the sensitivities. In this paper, we propose the adjoint Lagrangian method, which computes all the gradients necessary for augmentedLagrangianbased optimization in a single adjoint analysis. After the nominal simulation of the circuit has been carried out, the gradients of the merit function are expressed as the gradients of a weighted sum of circuit measurements. The weights are dependent on the nominal solution and on optimizer quantities such as Lagrange multipliers. By suitably choosing the excitations of the adjoint circuit, the gradients of the merit function are computed via a single adjoint analysis, irrespective of the number of measurements and the number of parameters of the optimization. This procedure requires close integration between the nonlinear optimization software and the circuit simulation program. The adjoint