Results 1  10
of
27
Expressivity of coalgebraic modal logic: The limits and beyond
 IN FOUNDATIONS OF SOFTWARE SCIENCE AND COMPUTATION STRUCTURES, VOLUME 3441 OF LNCS
, 2005
"... Modal logic has a good claim to being the logic of choice for describing the reactive behaviour of systems modeled as coalgebras. Logics with modal operators obtained from socalled predicate liftings have been shown to be invariant under behavioral equivalence. Expressivity results stating that, c ..."
Abstract

Cited by 55 (13 self)
 Add to MetaCart
(Show Context)
Modal logic has a good claim to being the logic of choice for describing the reactive behaviour of systems modeled as coalgebras. Logics with modal operators obtained from socalled predicate liftings have been shown to be invariant under behavioral equivalence. Expressivity results stating that, conversely, logically indistinguishable states are behaviorally equivalent depend on the existence of separating sets of predicate liftings for the signature functor at hand. Here, we provide a classification result for predicate liftings which leads to an easy criterion for the existence of such separating sets, and we give simple examples of functors that fail to admit expressive normal or monotone modal logics, respectively, or in fact an expressive (unary) modal logic at all. We then move on to polyadic modal logic, where modal operators may take more than one argument formula. We show that every accessible functor admits an expressive polyadic modal logic. Moreover, expressive polyadic modal logics are, unlike unary modal logics, compositional.
PSPACE bounds for rank 1 modal logics
 IN LICS’06
, 2006
"... For lack of general algorithmic methods that apply to wide classes of logics, establishing a complexity bound for a given modal logic is often a laborious task. The present work is a step towards a general theory of the complexity of modal logics. Our main result is that all rank1 logics enjoy a sh ..."
Abstract

Cited by 36 (19 self)
 Add to MetaCart
(Show Context)
For lack of general algorithmic methods that apply to wide classes of logics, establishing a complexity bound for a given modal logic is often a laborious task. The present work is a step towards a general theory of the complexity of modal logics. Our main result is that all rank1 logics enjoy a shallow model property and thus are, under mild assumptions on the format of their axiomatisation, in PSPACE. This leads to a unified derivation of tight PSPACEbounds for a number of logics including K, KD, coalition logic, graded modal logic, majority logic, and probabilistic modal logic. Our generic algorithm moreover finds tableau proofs that witness pleasant prooftheoretic properties including a weak subformula property. This generality is made possible by a coalgebraic semantics, which conveniently abstracts from the details of a given model class and thus allows covering a broad range of logics in a uniform way.
A Finite Model Construction For Coalgebraic Modal Logic
"... In recent years, a tight connection has emerged between modal logic on the one hand and coalgebras, understood as generic transition systems, on the other hand. Here, we prove that (finitary) coalgebraic modal logic has the finite model property. This fact not only reproves known completeness result ..."
Abstract

Cited by 35 (17 self)
 Add to MetaCart
(Show Context)
In recent years, a tight connection has emerged between modal logic on the one hand and coalgebras, understood as generic transition systems, on the other hand. Here, we prove that (finitary) coalgebraic modal logic has the finite model property. This fact not only reproves known completeness results for coalgebraic modal logic, which we push further by establishing that every coalgebraic modal logic admits a complete axiomatization of rank 1; it also enables us to establish a generic decidability result and a first complexity bound. Examples covered by these general results include, besides standard HennessyMilner logic, graded modal logic and probabilistic modal logic.
NonDeterministic Kleene Coalgebras
"... In this paper, we present a systematic way of deriving (1) languages of (generalised) regular expressions, and (2) sound and complete axiomatizations thereof, for a wide variety of systems. This generalizes both the results of Kleene (on regular languages and deterministic finite automata) and Miln ..."
Abstract

Cited by 24 (9 self)
 Add to MetaCart
(Show Context)
In this paper, we present a systematic way of deriving (1) languages of (generalised) regular expressions, and (2) sound and complete axiomatizations thereof, for a wide variety of systems. This generalizes both the results of Kleene (on regular languages and deterministic finite automata) and Milner (on regular behaviours and finite labelled transition systems), and includes many other systems such as Mealy and Moore machines.
Rank1 modal logics are coalgebraic
 IN STACS 2007, 24TH ANNUAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE, PROCEEDINGS
, 2007
"... Coalgebras provide a unifying semantic framework for a wide variety of modal logics. It has previously been shown that the class of coalgebras for an endofunctor can always be axiomatised in rank 1. Here we establish the converse, i.e. every rank 1 modal logic has a sound and strongly complete coal ..."
Abstract

Cited by 21 (14 self)
 Add to MetaCart
Coalgebras provide a unifying semantic framework for a wide variety of modal logics. It has previously been shown that the class of coalgebras for an endofunctor can always be axiomatised in rank 1. Here we establish the converse, i.e. every rank 1 modal logic has a sound and strongly complete coalgebraic semantics. As a consequence, recent results on coalgebraic modal logic, in particular generic decision procedures and upper complexity bounds, become applicable to arbitrary rank 1 modal logics, without regard to their semantic status; we thus obtain purely syntactic versions of these results. As an extended example, we apply our framework to recently defined deontic logics.
Beyond rank 1: Algebraic semantics and finite models for coalgebraic logics
, 2008
"... Coalgebras provide a uniform framework for the semantics of a large class of (mostly nonnormal) modal logics, including e.g. monotone modal logic, probabilistic and graded modal logic, and coalition logic, as well as the usual Kripke semantics of modal logic. In earlier work, the finite model prop ..."
Abstract

Cited by 12 (8 self)
 Add to MetaCart
(Show Context)
Coalgebras provide a uniform framework for the semantics of a large class of (mostly nonnormal) modal logics, including e.g. monotone modal logic, probabilistic and graded modal logic, and coalition logic, as well as the usual Kripke semantics of modal logic. In earlier work, the finite model property for coalgebraic logics has been established w.r.t. the class of all structures appropriate for a given logic at hand; the corresponding modal logics are characterised by being axiomatised in rank 1, i.e. without nested modalities. Here, we extend the range of coalgebraic techniques to cover logics that impose global properties on their models, formulated as frame conditions with possibly nested modalities on the logical side (in generalisation of frame conditions such as symmetry or transitivity in the context of Kripke frames). We show that the finite model property for such logics follows from the finite algebra property of the associated class of complex algebras, and then investigate sufficient conditions for the finite algebra property to hold. Example applications include extensions of coalition logic and logics of uncertainty and knowledge.
The least fibred lifting and the expressivity of coalgebraic modal logic
 In Proc. CALCO 2005, volume 3629 of LNCS
, 2005
"... and relationpreserving functions. In this paper, the least (fibrewise) of such liftings, L(B), is characterized for essentially any B. The lifting has all the useful properties of the relation lifting due to Jacobs, without the usual assumption of weak pullback preservation; if B preserves weak pu ..."
Abstract

Cited by 10 (1 self)
 Add to MetaCart
(Show Context)
and relationpreserving functions. In this paper, the least (fibrewise) of such liftings, L(B), is characterized for essentially any B. The lifting has all the useful properties of the relation lifting due to Jacobs, without the usual assumption of weak pullback preservation; if B preserves weak pullbacks, the two liftings coincide. Equivalence relations can be viewed as Boolean algebras of subsets (predicates, tests). This correspondence relates L(B) to the least test suite lifting T (B), which is defined in the spirit of predicate lifting as used in coalgebraic modal logic. Properties of T (B) translate to a general expressivity result for a modal logic for Bcoalgebras. In the resulting logic, modal operators of any arity can appear. 1
Shallow Models for NonIterative Modal Logics
"... Modal logics see a wide variety of applications in artificial intelligence, e.g. in reasoning about knowledge, belief, uncertainty, agency, defaults, and relevance. From the perspective of applications, the attractivity of modal logics stems from a combination of expressive power and comparatively l ..."
Abstract

Cited by 6 (5 self)
 Add to MetaCart
(Show Context)
Modal logics see a wide variety of applications in artificial intelligence, e.g. in reasoning about knowledge, belief, uncertainty, agency, defaults, and relevance. From the perspective of applications, the attractivity of modal logics stems from a combination of expressive power and comparatively low computational complexity. Compared to the classical treatment of modal logics with relational semantics, the use of modal logics in AI has two characteristic traits: Firstly, a large and growing variety of logics is used, adapted to the concrete situation at hand, and secondly, these logics are often nonnormal. Here, we present a shallow model construction that witnesses PSPACE bounds for a broad class of mostly nonnormal modal logics. Our approach is uniform and generic: we present general criteria that uniformly apply to and are easily checked in large numbers of examples. Thus, we not only reprove known complexity bounds for a wide variety of structurally different logics and obtain previously unknown PSPACEbounds, e.g. for Elgesem’s logic of agency, but also lay the foundations upon which the complexity of newly emerging logics can be determined.
Bialgebraic methods in structural operational semantics
 ENTCS
, 2007
"... Bialgebraic semantics, invented a decade ago by Turi and Plotkin, is an approach to formal reasoning about wellbehaved structural operational specifications. An extension of algebraic and coalgebraic methods, it abstracts from concrete notions of syntax and system behaviour, thus treating various k ..."
Abstract

Cited by 5 (1 self)
 Add to MetaCart
Bialgebraic semantics, invented a decade ago by Turi and Plotkin, is an approach to formal reasoning about wellbehaved structural operational specifications. An extension of algebraic and coalgebraic methods, it abstracts from concrete notions of syntax and system behaviour, thus treating various kinds of operational descriptions in a uniform fashion. In this talk, the current state of the art in the area of bialgebraic semantics is presented, and its prospects for the future are sketched. In particular, a combination of basic bialgebraic techniques with a categorical approach to modal logic is described, as an abstract approach to proving compositionality by decomposing modal logics over structural operational specifications. Keywords:
Coalgebraic epistemic update without change of model
, 2007
"... We present a coalgebraic semantics for reasoning about information update in multiagent systems. The novelty is that we have one structure for both states and actions and thus our models do not involve the ”changeofmodel” phenomena that arise when using Kripke models. However, we prove that the u ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
We present a coalgebraic semantics for reasoning about information update in multiagent systems. The novelty is that we have one structure for both states and actions and thus our models do not involve the ”changeofmodel” phenomena that arise when using Kripke models. However, we prove that the usual models can be constructed from ours by categorical adjunction. The generality and abstraction of our coalgebraic model turns out to be extremely useful in proving preservation properties of update. In particular, we prove that positive knowledge is preserved and acquired as a result of epistemic update. We also prove common and nested knowledge properties of epistemic updates induced by specific epistemic actions such as public and private announcements, lying, and in particular unsafe actions of security protocols. Our model directly gives rise to a coalgebraic logic with both dynamic and epistemic modalities. We prove a soundness and completeness result for this logic, and illustrate the applicability of the logic by deriving knowledge properties of a simple security protocol.