Results 1  10
of
26
Generic trace semantics via coinduction
 Logical Methods in Comp. Sci
, 2007
"... Abstract. Trace semantics has been defined for various kinds of statebased systems, notably with different forms of branching such as nondeterminism vs. probability. In this paper we claim to identify one underlying mathematical structure behind these “trace ..."
Abstract

Cited by 21 (8 self)
 Add to MetaCart
Abstract. Trace semantics has been defined for various kinds of statebased systems, notably with different forms of branching such as nondeterminism vs. probability. In this paper we claim to identify one underlying mathematical structure behind these “trace
NonDeterministic Kleene Coalgebras
"... In this paper, we present a systematic way of deriving (1) languages of (generalised) regular expressions, and (2) sound and complete axiomatizations thereof, for a wide variety of systems. This generalizes both the results of Kleene (on regular languages and deterministic finite automata) and Miln ..."
Abstract

Cited by 14 (5 self)
 Add to MetaCart
In this paper, we present a systematic way of deriving (1) languages of (generalised) regular expressions, and (2) sound and complete axiomatizations thereof, for a wide variety of systems. This generalizes both the results of Kleene (on regular languages and deterministic finite automata) and Milner (on regular behaviours and finite labelled transition systems), and includes many other systems such as Mealy and Moore machines.
A.: Coalgebraic Logic and Synthesis of Mealy Machines
"... Abstract. We present a novel coalgebraic logic for deterministic Mealy machines that is sound, complete and expressive w.r.t. bisimulation. Every finite Mealy machine corresponds to a finite formula in the language. For the converse, we give a compositional synthesis algorithm which transforms every ..."
Abstract

Cited by 10 (7 self)
 Add to MetaCart
Abstract. We present a novel coalgebraic logic for deterministic Mealy machines that is sound, complete and expressive w.r.t. bisimulation. Every finite Mealy machine corresponds to a finite formula in the language. For the converse, we give a compositional synthesis algorithm which transforms every formula into a finite Mealy machine whose behaviour is exactly the set of causal functions satisfying the formula. 1
Coalgebraic modal logic beyond Sets
 In MFPS XXIII
, 2007
"... Replace this file with prentcsmacro.sty for your meeting, or with entcsmacro.sty for your meeting. Both can be ..."
Abstract

Cited by 10 (3 self)
 Add to MetaCart
Replace this file with prentcsmacro.sty for your meeting, or with entcsmacro.sty for your meeting. Both can be
Bialgebraic Methods and Modal Logic in Structural Operational Semantics
 Electronic Notes in Theoretical Computer Science
, 2007
"... Bialgebraic semantics, invented a decade ago by Turi and Plotkin, is an approach to formal reasoning about wellbehaved structural operational semantics (SOS). An extension of algebraic and coalgebraic methods, it abstracts from concrete notions of syntax and system behaviour, thus treating various ..."
Abstract

Cited by 9 (3 self)
 Add to MetaCart
Bialgebraic semantics, invented a decade ago by Turi and Plotkin, is an approach to formal reasoning about wellbehaved structural operational semantics (SOS). An extension of algebraic and coalgebraic methods, it abstracts from concrete notions of syntax and system behaviour, thus treating various kinds of operational descriptions in a uniform fashion. In this paper, bialgebraic semantics is combined with a coalgebraic approach to modal logic in a novel, general approach to proving the compositionality of process equivalences for languages defined by structural operational semantics. To prove compositionality, one provides a notion of behaviour for logical formulas, and defines an SOSlike specification of modal operators which reflects the original SOS specification of the language. This approach can be used to define SOS congruence formats as well as to prove compositionality for specific languages and equivalences. Key words: structural operational semantics, coalgebra, bialgebra, modal logic, congruence format 1
πcalculus in logical form
 Logic in Computer Science, LICS 2007
, 2007
"... Abramsky’s logical formulation of domain theory is extended to encompass the domain theoretic model for picalculus processes of Stark and of Fiore, Moggi and Sangiorgi. This is done by defining a logical counterpart of categorical constructions including dynamic name allocation and name exponentiati ..."
Abstract

Cited by 8 (3 self)
 Add to MetaCart
Abramsky’s logical formulation of domain theory is extended to encompass the domain theoretic model for picalculus processes of Stark and of Fiore, Moggi and Sangiorgi. This is done by defining a logical counterpart of categorical constructions including dynamic name allocation and name exponentiation, and showing that they are dual to standard constructs in functor categories. We show that initial algebras of functors defined in terms of these constructs give rise to a logic that is sound, complete, and characterises bisimilarity. The approach is modular, and we apply it to derive a logical formulation of picalculus. The resulting logic is a modal calculus with primitives for input, free output and bound output. 1.
An algebra for Kripke polynomial coalgebras
 24TH ANNUAL IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE
, 2009
"... Several dynamical systems, such as deterministic automata and labelled transition systems, can be described as coalgebras of socalled Kripke polynomial functors, built up from constants and identities, using product, coproduct and powerset. Locally finite Kripke polynomial coalgebras can be charact ..."
Abstract

Cited by 7 (7 self)
 Add to MetaCart
Several dynamical systems, such as deterministic automata and labelled transition systems, can be described as coalgebras of socalled Kripke polynomial functors, built up from constants and identities, using product, coproduct and powerset. Locally finite Kripke polynomial coalgebras can be characterized up to bisimulation by a specification language that generalizes Kleene’s regular expressions for finite automata. In this paper, we equip this specification language with an axiomatization and prove it sound and complete with respect to bisimulation, using a purely coalgebraic argument. We demonstrate the usefulness of our framework by providing a finite equational system for (non)deterministic finite automata, labelled transition systems with explicit termination, and automata on guarded strings.
Beyond rank 1: Algebraic semantics and finite models for coalgebraic logics
, 2008
"... Coalgebras provide a uniform framework for the semantics of a large class of (mostly nonnormal) modal logics, including e.g. monotone modal logic, probabilistic and graded modal logic, and coalition logic, as well as the usual Kripke semantics of modal logic. In earlier work, the finite model prop ..."
Abstract

Cited by 7 (5 self)
 Add to MetaCart
Coalgebras provide a uniform framework for the semantics of a large class of (mostly nonnormal) modal logics, including e.g. monotone modal logic, probabilistic and graded modal logic, and coalition logic, as well as the usual Kripke semantics of modal logic. In earlier work, the finite model property for coalgebraic logics has been established w.r.t. the class of all structures appropriate for a given logic at hand; the corresponding modal logics are characterised by being axiomatised in rank 1, i.e. without nested modalities. Here, we extend the range of coalgebraic techniques to cover logics that impose global properties on their models, formulated as frame conditions with possibly nested modalities on the logical side (in generalisation of frame conditions such as symmetry or transitivity in the context of Kripke frames). We show that the finite model property for such logics follows from the finite algebra property of the associated class of complex algebras, and then investigate sufficient conditions for the finite algebra property to hold. Example applications include extensions of coalition logic and logics of uncertainty and knowledge.
Structural Operational Semantics and Modal Logic, Revisited
"... A previously introduced combination of the bialgebraic approach to structural operational semantics with coalgebraic modal logic is reexamined and improved in some aspects. Firstly, a more abstract, conceptual proof of the main compositionality theorem is given, based on an understanding of modal l ..."
Abstract

Cited by 3 (1 self)
 Add to MetaCart
A previously introduced combination of the bialgebraic approach to structural operational semantics with coalgebraic modal logic is reexamined and improved in some aspects. Firstly, a more abstract, conceptual proof of the main compositionality theorem is given, based on an understanding of modal logic as a study of coalgebras in slice categories of adjunctions. Secondly, a more concrete understanding of the assumptions of the theorem is provided, where proving compositionality amounts to finding a syntactic distributive law between two collections of predicate liftings. Keywords: structural operational semantics, modal logic, coalgebra 1
Functorial coalgebraic logic: The case of manysorted varieties
 Electron. Notes Theor. Comput. Sci
"... Following earlier work, a modal logic for Tcoalgebras is a functor L on a suitable variety. Syntax and proof system of the logic are given by presentations of the functor. This paper makes two contributions. First, a previous result characterizing those functors that have presentations is generaliz ..."
Abstract

Cited by 3 (2 self)
 Add to MetaCart
Following earlier work, a modal logic for Tcoalgebras is a functor L on a suitable variety. Syntax and proof system of the logic are given by presentations of the functor. This paper makes two contributions. First, a previous result characterizing those functors that have presentations is generalized from endofunctors on onesorted varieties to functors between manysorted varieties. This yields an equational logic for the presheaf semantics of higherorder abstract syntax. As another application, we show how the move to functors between manysorted varieties allows to modularly combine syntax and proof systems of different logics. Second, we show how to associate to any setfunctor T a complete (finitary) logic L consisting of modal operators and Boolean connectives.