Results 1 
7 of
7
Tensor products and homotopies for ωgroupoids and crossed complexes
, 2007
"... Crossed complexes have longstanding uses, explicit and implicit, in homotopy theory and the cohomology of groups. It is here shown that the category of crossed complexes over groupoids has a symmetric monoidal closed structure in which the internal Hom functor is built from morphisms of crossed comp ..."
Abstract

Cited by 43 (21 self)
 Add to MetaCart
Crossed complexes have longstanding uses, explicit and implicit, in homotopy theory and the cohomology of groups. It is here shown that the category of crossed complexes over groupoids has a symmetric monoidal closed structure in which the internal Hom functor is built from morphisms of crossed complexes, nonabelian chain homotopies between them and similar higher homotopies. The tensor product involves nonabelian constructions related to the commutator calculus and the homotopy addition lemma. This monoidal closed structure is derived from that on the equivalent category of ωgroupoids where the underlying cubical structure gives geometrically natural definitions of tensor products and homotopies.
Covering groups of nonconnected topological groups, and the monodromy groupoid of a topological group
, 1993
"... All spaces are assumed to be locally path connected and semilocally 1connected. Let X be a connected topological group with identity e, and let p: ˜ X → X be the universal cover of the underlying space of X. It follows easily from classical properties of lifting maps to covering spaces that for a ..."
Abstract

Cited by 13 (10 self)
 Add to MetaCart
All spaces are assumed to be locally path connected and semilocally 1connected. Let X be a connected topological group with identity e, and let p: ˜ X → X be the universal cover of the underlying space of X. It follows easily from classical properties of lifting maps to covering spaces that for any point ˜e in ˜ X with p˜e = e there is a unique structure of topological group on ˜ X such that ˜e is the
Computing homotopy types using crossed ncubes of groups
 in Adams Memorial Symposium on Algebraic Topology
, 1992
"... Dedicated to the memory of Frank Adams ..."
Crossed complexes, and free crossed resolutions for amalgamated sums and HNNextensions of groups
 Georgian Math. J
, 1999
"... Dedicated to Hvedri Inassaridze for his 70th birthday The category of crossed complexes gives an algebraic model of CWcomplexes and cellular maps. Free crossed resolutions of groups contain information on a presentation of the group as well as higher homological information. We relate this to the p ..."
Abstract

Cited by 7 (6 self)
 Add to MetaCart
Dedicated to Hvedri Inassaridze for his 70th birthday The category of crossed complexes gives an algebraic model of CWcomplexes and cellular maps. Free crossed resolutions of groups contain information on a presentation of the group as well as higher homological information. We relate this to the problem of calculating nonabelian extensions. We show how the strong properties of this category allow for the computation of free crossed resolutions for amalgamated sums and HNNextensions of groups, and so obtain computations of higher homotopical syzygies in these cases. 1
Crossed complexes, free crossed resolutions and graph products of groups’, (submitted
"... The category of crossed complexes gives an algebraic model of CWcomplexes and cellular maps. Free crossed resolutions of groups contain information on a presentation of the group as well as higher homological information. We relate this to the problem of calculating nonabelian extensions. We show ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
The category of crossed complexes gives an algebraic model of CWcomplexes and cellular maps. Free crossed resolutions of groups contain information on a presentation of the group as well as higher homological information. We relate this to the problem of calculating nonabelian extensions. We show how the strong properties of this category allow for the computation of free crossed resolutions of graph products of groups, and so obtain computations of higher homotopical syzygies in this case. 1