Results 1  10
of
146
Randomized Algorithms
, 1995
"... Randomized algorithms, once viewed as a tool in computational number theory, have by now found widespread application. Growth has been fueled by the two major benefits of randomization: simplicity and speed. For many applications a randomized algorithm is the fastest algorithm available, or the simp ..."
Abstract

Cited by 1863 (38 self)
 Add to MetaCart
Randomized algorithms, once viewed as a tool in computational number theory, have by now found widespread application. Growth has been fueled by the two major benefits of randomization: simplicity and speed. For many applications a randomized algorithm is the fastest algorithm available, or the simplest, or both. A randomized algorithm is an algorithm that uses random numbers to influence the choices it makes in the course of its computation. Thus its behavior (typically quantified as running time or quality of output) varies from
A Digital Signature Scheme Secure Against Adaptive ChosenMessage Attacks
, 1995
"... We present a digital signature scheme based on the computational diculty of integer factorization. The scheme possesses the novel property of being robust against an adaptive chosenmessage attack: an adversary who receives signatures for messages of his choice (where each message may be chosen in a ..."
Abstract

Cited by 829 (47 self)
 Add to MetaCart
We present a digital signature scheme based on the computational diculty of integer factorization. The scheme possesses the novel property of being robust against an adaptive chosenmessage attack: an adversary who receives signatures for messages of his choice (where each message may be chosen in a way that depends on the signatures of previously chosen messages) can not later forge the signature of even a single additional message. This may be somewhat surprising, since the properties of having forgery being equivalent to factoring and being invulnerable to an adaptive chosenmessage attack were considered in the folklore to be contradictory. More generally, we show how to construct a signature scheme with such properties based on the existence of a "clawfree" pair of permutations  a potentially weaker assumption than the intractibility of integer factorization. The new scheme is potentially practical: signing and verifying signatures are reasonably fast, and signatures are compact.
Simple Constructions of Almost kwise Independent Random Variables
, 1992
"... We present three alternative simple constructions of small probability spaces on n bits for which any k bits are almost independent. The number of bits used to specify a point in the sample space is (2 + o(1))(log log n + k/2 + log k + log 1 ɛ), where ɛ is the statistical difference between the dist ..."
Abstract

Cited by 264 (40 self)
 Add to MetaCart
We present three alternative simple constructions of small probability spaces on n bits for which any k bits are almost independent. The number of bits used to specify a point in the sample space is (2 + o(1))(log log n + k/2 + log k + log 1 ɛ), where ɛ is the statistical difference between the distribution induced on any k bit locations and the uniform distribution. This is asymptotically comparable to the construction recently presented by Naor and Naor (our size bound is better as long as ɛ < 1/(k log n)). An additional advantage of our constructions is their simplicity.
The NPcompleteness column: an ongoing guide
 Journal of Algorithms
, 1985
"... This is the nineteenth edition of a (usually) quarterly column that covers new developments in the theory of NPcompleteness. The presentation is modeled on that used by M. R. Garey and myself in our book ‘‘Computers and Intractability: A Guide to the Theory of NPCompleteness,’ ’ W. H. Freeman & Co ..."
Abstract

Cited by 188 (0 self)
 Add to MetaCart
This is the nineteenth edition of a (usually) quarterly column that covers new developments in the theory of NPcompleteness. The presentation is modeled on that used by M. R. Garey and myself in our book ‘‘Computers and Intractability: A Guide to the Theory of NPCompleteness,’ ’ W. H. Freeman & Co., New York, 1979 (hereinafter referred to as ‘‘[G&J]’’; previous columns will be referred to by their dates). A background equivalent to that provided by [G&J] is assumed, and, when appropriate, crossreferences will be given to that book and the list of problems (NPcomplete and harder) presented there. Readers who have results they would like mentioned (NPhardness, PSPACEhardness, polynomialtimesolvability, etc.) or open problems they would like publicized, should
Noninteractive ZeroKnowledge
 SIAM J. COMPUTING
, 1991
"... This paper investigates the possibility of disposing of interaction between prover and verifier in a zeroknowledge proof if they share beforehand a short random string. Without any assumption, it is proven that noninteractive zeroknowledge proofs exist for some numbertheoretic languages for which ..."
Abstract

Cited by 188 (19 self)
 Add to MetaCart
This paper investigates the possibility of disposing of interaction between prover and verifier in a zeroknowledge proof if they share beforehand a short random string. Without any assumption, it is proven that noninteractive zeroknowledge proofs exist for some numbertheoretic languages for which no efficient algorithm is known. If deciding quadratic residuosity (modulo composite integers whose factorization is not known) is computationally hard, it is shown that the NPcomplete language of satisfiability also possesses noninteractive zeroknowledge proofs.
Expander Graphs and their Applications
, 2003
"... Contents 1 The Magical Mystery Tour 7 1.1 Some Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.1.1 Hardness results for linear transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.1.2 Error Correcting Codes . . . . . . . ..."
Abstract

Cited by 182 (5 self)
 Add to MetaCart
Contents 1 The Magical Mystery Tour 7 1.1 Some Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.1.1 Hardness results for linear transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.1.2 Error Correcting Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.1.3 Derandomizing Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.2 Magical Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.2.1 A Super Concentrator with O(n) edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.2.2 Error Correcting Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.2.3 Derandomizing Random Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
How to Recycle Random Bits
, 1989
"... We show that modified versions of the linear congruential generator and the shift register generator are provably good for amplifying the correctness of a probabilistic algorithm. More precisely, if r random bits are needed for a BPP algorithm to be correct with probability at least 2=3, then O(r + ..."
Abstract

Cited by 179 (11 self)
 Add to MetaCart
We show that modified versions of the linear congruential generator and the shift register generator are provably good for amplifying the correctness of a probabilistic algorithm. More precisely, if r random bits are needed for a BPP algorithm to be correct with probability at least 2=3, then O(r + k 2 ) bits are needed to improve this probability to 1 \Gamma 2 \Gammak . We also present a different pseudorandom generator that is optimal, up to a constant factor, in this regard: it uses only O(r + k) bits to improve the probability to 1 \Gamma 2 \Gammak . This generator is based on random walks on expanders. Our results do not depend on any unproven assumptions. Next we show that our modified versions of the shift register and linear congruential generators can be used to sample from distributions using, in the limit, the informationtheoretic lower bound on random bits. 1. Introduction Randomness plays a vital role in almost all areas of computer science, both in theory and in...
Using Secure Coprocessors
, 1994
"... The views and conclusions in this document are those of the authors and do not necessarily represent the official policies or endorsements of any of the research sponsors. How do we build distributed systems that are secure? Cryptographic techniques can be used to secure the communications between p ..."
Abstract

Cited by 150 (8 self)
 Add to MetaCart
The views and conclusions in this document are those of the authors and do not necessarily represent the official policies or endorsements of any of the research sponsors. How do we build distributed systems that are secure? Cryptographic techniques can be used to secure the communications between physically separated systems, but this is not enough: we must be able to guarantee the privacy of the cryptographic keys and the integrity of the cryptographic functions, in addition to the integrity of the security kernel and access control databases we have on the machines. Physical security is a central assumption upon which secure distributed systems are built; without this foundation even the best cryptosystem or the most secure kernel will crumble. In this thesis, I address the distributed security problem by proposing the addition of a small, physically secure hardware module, a secure coprocessor, to standard workstations and PCs. My central axiom is that secure coprocessors are able to maintain the privacy of the data they process. This thesis attacks the distributed security problem from multiple sides. First, I analyze the security properties of existing system components, both at the hardware and
Signature Schemes Based on the Strong RSA Assumption
 ACM TRANSACTIONS ON INFORMATION AND SYSTEM SECURITY
, 1998
"... We describe and analyze a new digital signature scheme. The new scheme is quite efficient, does not require the the signer to maintain any state, and can be proven secure against adaptive chosen message attack under a reasonable intractability assumption, the socalled Strong RSA Assumption. Moreove ..."
Abstract

Cited by 150 (8 self)
 Add to MetaCart
We describe and analyze a new digital signature scheme. The new scheme is quite efficient, does not require the the signer to maintain any state, and can be proven secure against adaptive chosen message attack under a reasonable intractability assumption, the socalled Strong RSA Assumption. Moreover, a hash function can be incorporated into the scheme in such a way that it is also secure in the random oracle model under the standard RSA Assumption.
Efficient generation of shared RSA keys
 Advances in Cryptology  CRYPTO 97
, 1997
"... We describe efficient techniques for a number of parties to jointly generate an RSA key. At the end of the protocol an RSA modulus N = pq is publicly known. None of the parties know the factorization of N. In addition a public encryption exponent is publicly known and each party holds a share of the ..."
Abstract

Cited by 124 (4 self)
 Add to MetaCart
We describe efficient techniques for a number of parties to jointly generate an RSA key. At the end of the protocol an RSA modulus N = pq is publicly known. None of the parties know the factorization of N. In addition a public encryption exponent is publicly known and each party holds a share of the private exponent that enables threshold decryption. Our protocols are efficient in computation and communication. All results are presented in the honest but curious settings (passive adversary).