Results 1 
4 of
4
Improved Bounds on the Inefficiency of LengthRestricted Prefix Codes
 Departamento de Inform'atica, PUCRJ, Rio de
, 1997
"... : Consider an alphabet \Sigma = fa 1 ; : : : ; ang with corresponding symbol probabilities p 1 ; : : : ; pn . The L\Gammarestricted prefix code is a prefix code where all the code lengths are not greater than L. The value L is a given integer such that L dlog ne. Define the average code length dif ..."
Abstract

Cited by 14 (5 self)
 Add to MetaCart
: Consider an alphabet \Sigma = fa 1 ; : : : ; ang with corresponding symbol probabilities p 1 ; : : : ; pn . The L\Gammarestricted prefix code is a prefix code where all the code lengths are not greater than L. The value L is a given integer such that L dlog ne. Define the average code length difference by ffl = P n i=1 p i :l i \Gamma P n i=1 p i :l i , where l 1 ; : : : ; l n are the code lengths of the optimal Lrestricted prefix code for \Sigma and l 1 ; : : : ; l n are the code lengths of the optimal prefix code for \Sigma. Let / be the golden ratio 1,618. In this paper, we show that ffl ! 1=/ L\Gammadlog(n+dlog ne\GammaL)e\Gamma1 when L ? dlog ne. We also prove the sharp bound ffl ! dlog ne \Gamma 1, when L = dlog ne. By showing the lower bound 1 / L\Gammadlog ne+2+dlog n n\GammaL e \Gamma1 on the maximum value of ffl, we guarantee that our bound is asymptotically tight in the range dlog ne ! L n=2. Furthermore, we present an O(n) time and space 1=/ L\Gammadlo...
The WARMUP Algorithm: A Lagrangean Construction of Length Restricted Huffman Codes
 Departamento de Inform'atica, PUCRJ, Rio de
, 1996
"... : Given an alphabet fa 1 ; : : : ; ang with corresponding set of weights fw 1 ; : : : ; wng, and a number L dlog ne, we introduce an O(n log n+n log w) algorithm for constructing a suboptimal prefix code with restricted maximal length L, where w is the highest presented weight. The number of additi ..."
Abstract

Cited by 13 (8 self)
 Add to MetaCart
: Given an alphabet fa 1 ; : : : ; ang with corresponding set of weights fw 1 ; : : : ; wng, and a number L dlog ne, we introduce an O(n log n+n log w) algorithm for constructing a suboptimal prefix code with restricted maximal length L, where w is the highest presented weight. The number of additional bits per symbol generated by our code is not greater than 1=/ L\Gammadlog(n+dlog ne\GammaL)e\Gamma2 when L ? dlog ne + 1, where / is the golden ratio 1:618. An important feature of the proposed algorithm is its implementation simplicity. The algorithm is basically a selected sequence of Huffman trees construction for modified weights. Keywords: Prefix codes, Huffman Trees, Lagragean Duality Resumo: Dado um alfabeto fa 1 ; : : : ; ang com pesos correspondentes fw 1 ; : : : ; wng e um n'umero L dlog ne, n'os apresentamoso um algoritmo de de complexidade O(n log n + n log w)para construit c'odigos de prefixo sub'otimos com restric~ao de comprimento L, onde w 'e o maior peso do dado co...
Efficient Implementation of the WARMUP Algorithm for the Construction of LengthRestricted Prefix Codes
 in Proceedings of the ALENEX
, 1999
"... . Given an alphabet \Sigma = fa1 ; : : : ; ang with a corresponding list of positive weights fw1 ; : : : ; wng and a length restriction L, the lengthrestricted prefix code problem is to find, a prefix code that minimizes P n i=1 w i l i , where l i , the length of the codeword assigned to a i , ..."
Abstract

Cited by 5 (0 self)
 Add to MetaCart
. Given an alphabet \Sigma = fa1 ; : : : ; ang with a corresponding list of positive weights fw1 ; : : : ; wng and a length restriction L, the lengthrestricted prefix code problem is to find, a prefix code that minimizes P n i=1 w i l i , where l i , the length of the codeword assigned to a i , cannot be greater than L, for i = 1; : : : ; n. In this paper, we present an efficient implementation of the WARMUP algorithm, an approximative method for this problem. The worstcase time complexity of WARMUP is O(n log n +n log wn ), where wn is the greatest weight. However, some experiments with a previous implementation of WARMUP show that it runs in linear time for several practical cases, if the input weights are already sorted. In addition, it often produces optimal codes. The proposed implementation combines two new enhancements to reduce the space usage of WARMUP and to improve its execution time. As a result, it is about ten times faster than the previous implementat...
Inplace LengthRestricted Prefix Coding
 In String Processing and Information Retrieval
, 1998
"... Huffman codes, combined with wordbased models, are considered efficient compression schemes for fulltext retrieval systems. The decoding rate for these schemes can be substantially improved if the maximum length of the codewords is not greater then the machine word size L. However, if the vocabular ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
Huffman codes, combined with wordbased models, are considered efficient compression schemes for fulltext retrieval systems. The decoding rate for these schemes can be substantially improved if the maximum length of the codewords is not greater then the machine word size L. However, if the vocabulary is large, simple methods for generating optimal lengthrestricted codes are either too slow or require a significantly large amount of memory. In this paper we present an inplace, simple and fast implementation for the BRCI (Initials of Build, Remove, Condense and Insert) algorithm, an approximative method for lengthrestricted coding. It overwrites a sorted input list of n weights with the corresponding codeword lengths in O(n) time. In addition, the worstcase compression loss introduced by BRCI codes with respect to unrestricted Huffman codes is proved to be negligible for all practical values of both L and n. 1 Introduction Zobel and Moffat [18] have proposed an innovative compressio...