Results 11  20
of
255
The Relationship Between Breaking the DiffieHellman Protocol and Computing Discrete Logarithms
, 1998
"... Both uniform and nonuniform results concerning the security of the DiffieHellman keyexchange protocol are proved. First, it is shown that in a cyclic group G of order jGj = Q p e i i , where all the multiple prime factors of jGj are polynomial in log jGj, there exists an algorithm that re ..."
Abstract

Cited by 42 (3 self)
 Add to MetaCart
Both uniform and nonuniform results concerning the security of the DiffieHellman keyexchange protocol are proved. First, it is shown that in a cyclic group G of order jGj = Q p e i i , where all the multiple prime factors of jGj are polynomial in log jGj, there exists an algorithm that reduces the computation of discrete logarithms in G to breaking the DiffieHellman protocol in G and has complexity p maxf(p i )g \Delta (log jGj) O(1) , where (p) stands for the minimum of the set of largest prime factors of all the numbers d in the interval [p \Gamma 2 p p+1; p+2 p p+ 1]. Under the unproven but plausible assumption that (p) is polynomial in log p, this reduction implies that the DiffieHellman problem and the discrete logarithm problem are polynomialtime equivalent in G. Second, it is proved that the DiffieHellman problem and the discrete logarithm problem are equivalent in a uniform sense for groups whose orders belong to certain classes: there exists a p...
On efficient sparse integer matrix Smith normal form computations
, 2001
"... We present a new algorithm to compute the Integer Smith normal form of large sparse matrices. We reduce the computation of the Smith form to independent, and therefore parallel, computations modulo powers of wordsize primes. Consequently, the algorithm does not suffer from coefficient growth. W ..."
Abstract

Cited by 39 (17 self)
 Add to MetaCart
(Show Context)
We present a new algorithm to compute the Integer Smith normal form of large sparse matrices. We reduce the computation of the Smith form to independent, and therefore parallel, computations modulo powers of wordsize primes. Consequently, the algorithm does not suffer from coefficient growth. We have implemented several variants of this algorithm (Elimination and/or BlackBox techniques) since practical performance depends strongly on the memory available. Our method has proven useful in algebraic topology for the computation of the homology of some large simplicial complexes.
DiffieHellman Oracles
 ADVANCES IN CRYPTOLOGY  CRYPTO '96 , LECTURE NOTES IN COMPUTER SCIENCE
, 1996
"... This paper consists of three parts. First, various types of DiffieHellman oracles for a cyclic group G and subgroups of G are defined and their equivalence is proved. In particular, the security of using a subgroup of G instead of G in the DiffieHellman protocol is investigated. Second, we derive ..."
Abstract

Cited by 37 (3 self)
 Add to MetaCart
(Show Context)
This paper consists of three parts. First, various types of DiffieHellman oracles for a cyclic group G and subgroups of G are defined and their equivalence is proved. In particular, the security of using a subgroup of G instead of G in the DiffieHellman protocol is investigated. Second, we derive several new conditions for the polynomialtime equivalence of breaking the DiffieHellman protocol and computing discrete logarithms in G which extend former results by den Boer and Maurer. Finally, efficient constructions of DiffieHellman groups with provable equivalence are described.
Algorithms for computing isogenies between elliptic curves
 Math. Comp
, 2000
"... Abstract. The heart of the improvements by Elkies to Schoof’s algorithm for computing the cardinality of elliptic curves over a finite field is the ability to compute isogenies between curves. Elkies ’ approach is well suited for the case where the characteristic of the field is large. Couveignes sh ..."
Abstract

Cited by 34 (6 self)
 Add to MetaCart
Abstract. The heart of the improvements by Elkies to Schoof’s algorithm for computing the cardinality of elliptic curves over a finite field is the ability to compute isogenies between curves. Elkies ’ approach is well suited for the case where the characteristic of the field is large. Couveignes showed how to compute isogenies in small characteristic. The aim of this paper is to describe the first successful implementation of Couveignes’s algorithm. In particular, we describe the use of fast algorithms for performing incremental operations on series. We also insist on the particular case of the characteristic 2. 1.
Speeding Up the Discrete Log Computation on Curves With Automorphisms
, 1999
"... We show how to speed up the discrete log computations on curves having automorphisms of large order, thus generalizing the attacks on ABC elliptic curves. This includes the first known attack on CM (hyper)elliptic curves, as well as most of the hyperelliptic curves described in the literature. ..."
Abstract

Cited by 32 (2 self)
 Add to MetaCart
We show how to speed up the discrete log computations on curves having automorphisms of large order, thus generalizing the attacks on ABC elliptic curves. This includes the first known attack on CM (hyper)elliptic curves, as well as most of the hyperelliptic curves described in the literature.
Finding Suitable Curves For The Elliptic Curve Method Of Factorization
 Math. Comp
, 1993
"... Using the parametrizations of Kubert, we show how to produce infinite families of elliptic curves which have prescribed nontrivial torsion over Q and rank at least one. These curves can be used to speed up the ECM factorization algorithm of Lenstra. We also briefly discuss curves with complex multip ..."
Abstract

Cited by 30 (2 self)
 Add to MetaCart
(Show Context)
Using the parametrizations of Kubert, we show how to produce infinite families of elliptic curves which have prescribed nontrivial torsion over Q and rank at least one. These curves can be used to speed up the ECM factorization algorithm of Lenstra. We also briefly discuss curves with complex multiplication in this context. 1 Introduction 1.1 The ECM method of Lenstra [5] for finding a prime factor p of a number N uses a "random" elliptic curve E : y 2 = f(x) = x 3 + ax + b: If the number k of points on E modulo p is smooth, the method succeeds. Suyama [9] and Montgomery [7] developed infinite classes of curves E for which k has some prescribed small factors; on reasonable probabilistic assumptions (borne out in practice) this should lead to a slight improvement in the method. Specifically, Montgomery and Suyama each force a factor of 12 in k, and Montgomery forces a factor of 16 but only on the assumption that p is congruent to 1 modulo 4. In this paper, we show how to force a...
The DiffieHellman Protocol
 DESIGNS, CODES, AND CRYPTOGRAPHY
, 1999
"... The 1976 seminal paper of Diffie and Hellman is a landmark in the history of cryptography. They introduced the fundamental concepts of a trapdoor oneway function, a publickey cryptosystem, and a digital signature scheme. Moreover, they presented a protocol, the socalled DiffieHellman protoco ..."
Abstract

Cited by 29 (0 self)
 Add to MetaCart
(Show Context)
The 1976 seminal paper of Diffie and Hellman is a landmark in the history of cryptography. They introduced the fundamental concepts of a trapdoor oneway function, a publickey cryptosystem, and a digital signature scheme. Moreover, they presented a protocol, the socalled DiffieHellman protocol, allowing two parties who share no secret information initially, to generate a mutual secret key. This paper summarizes the present knowledge on the security of this protocol.
Smooth numbers: computational number theory and beyond
 ALGORITHMIC NUMBER THEORY
, 2008
"... ..."
(Show Context)
Information and Computation: Classical and Quantum Aspects
 REVIEWS OF MODERN PHYSICS
, 2001
"... Quantum theory has found a new field of applications in the realm of information and computation during the recent years. This paper reviews how quantum physics allows information coding in classically unexpected and subtle nonlocal ways, as well as information processing with an efficiency largely ..."
Abstract

Cited by 24 (2 self)
 Add to MetaCart
Quantum theory has found a new field of applications in the realm of information and computation during the recent years. This paper reviews how quantum physics allows information coding in classically unexpected and subtle nonlocal ways, as well as information processing with an efficiency largely surpassing that of the present and foreseeable classical computers. Some outstanding aspects of classical and quantum information theory will be addressed here. Quantum teleportation, dense coding, and quantum cryptography are discussed as a few samples of the impact of quanta in the transmission of information. Quantum logic gates and quantum algorithms are also discussed as instances of the improvement in information processing by a quantum computer. We provide finally some examples of current experimental