Results 1  10
of
12
Factoring by electronic mail
, 1990
"... In this paper we describe our distributed implementation of two factoring algorithms. the elliptic curve method (ecm) and the multiple polynomial quadratic sieve algorithm (mpqs). Since the summer of 1987. our ermimplementation on a network of MicroVAX processors at DEC’s Systems Research Center h ..."
Abstract

Cited by 60 (10 self)
 Add to MetaCart
In this paper we describe our distributed implementation of two factoring algorithms. the elliptic curve method (ecm) and the multiple polynomial quadratic sieve algorithm (mpqs). Since the summer of 1987. our ermimplementation on a network of MicroVAX processors at DEC’s Systems Research Center has factored several most and more wanted numbers from the Cunningham project. In the summer of 1988. we implemented the multiple polynomial quadratic sieve algorithm on rhe same network On this network alone. we are now able to factor any!@I digit integer, or to find 35 digit factors of numbers up to 150 digits long within one month. To allow an even wider distribution of our programs we made use of electronic mail networks For the distribution of the programs and for interprocessor communicatton. Even during the mitial stage of this experiment machines all over the United States and at various places in Europe and Ausnalia conhibuted 15 percent of the total factorization effort. At all the sites where our program is running we only use cycles that would otherwise have been idle. This shows that the enormous computational task of factoring 100 digit integers with the current algoritluns can be completed almost for free. Since we use a negligible fraction of the idle cycles of alI the machines on the worldwide elecnonic mail networks. we could factor 100 digit integers within a few days with a little more help.
The MultipleLattice Number Field Sieve
 Chapter 3 of Ph.D. thesis; ftp://koobera.math.uic.edu/pub/papers/mlnfs.dvi
"... We introduce the multiplelattice number field sieve. The formal relation between the multiplelattice number field sieve and the number field sieve is the same as the formal relation between the multiplepolynomial quadratic sieve and the quadratic sieve. ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
(Show Context)
We introduce the multiplelattice number field sieve. The formal relation between the multiplelattice number field sieve and the number field sieve is the same as the formal relation between the multiplepolynomial quadratic sieve and the quadratic sieve.
Integer Factoring
, 2000
"... Using simple examples and informal discussions this article surveys the key ideas and major advances of the last quarter century in integer factorization. ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
Using simple examples and informal discussions this article surveys the key ideas and major advances of the last quarter century in integer factorization.
Computational Methods in Public Key Cryptology
, 2002
"... These notes informally review the most common methods from computational number theory that have applications in public key cryptology. ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
(Show Context)
These notes informally review the most common methods from computational number theory that have applications in public key cryptology.
Factoring Integers with LargePrime Variations of the Quadratic Sieve
, 1995
"... This article is concerned with the largeprime variations of the multipolynomial quadratic sieve factorization method: the PMPQS (one large prime) and the PPMPQS (two). We present the results of many factorization runs with the PMPQS and PPMPQS on SGI workstations and on a Cray C90 vector computer. ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
This article is concerned with the largeprime variations of the multipolynomial quadratic sieve factorization method: the PMPQS (one large prime) and the PPMPQS (two). We present the results of many factorization runs with the PMPQS and PPMPQS on SGI workstations and on a Cray C90 vector computer. Experiments show that for our Cray C90 implementations PPMPQS beats PMPQS for numbers of more than 80 digits, and that this crossover point goes down with the amount of available central memory. For PMPQS we give a formula to predict the total running time based on a short test run. The accuracy of the prediction is within 10% of the actual running time. For PPMPQS we do not have such a formula. Yet in order to provide measurements to help determining a good choice of the parameters in PPMPQS, we factored many numbers. In addition we give an experimental prediction formula for PPMPQS suitable if one wishes to factor many large numbers of about the same size. 1. INTRODUCTION
Sieve with Two Large Primes
"... This paper deals with variations of the Quadratic Sieve integer factoring algorithm. We describe what we believe is the rst implementation of the Hypercube Multiple Polynomial Quadratic Sieve with two large primes, We have used this program to factor many integers with up to 116 digits. Our program ..."
Abstract
 Add to MetaCart
(Show Context)
This paper deals with variations of the Quadratic Sieve integer factoring algorithm. We describe what we believe is the rst implementation of the Hypercube Multiple Polynomial Quadratic Sieve with two large primes, We have used this program to factor many integers with up to 116 digits. Our program appears to be many times faster than the (nonhypercube) Multiple Polynomial Quadratic Sieve with two large primes.