Results 1  10
of
43
Elliptic Curves And Primality Proving
 Math. Comp
, 1993
"... The aim of this paper is to describe the theory and implementation of the Elliptic Curve Primality Proving algorithm. ..."
Abstract

Cited by 202 (22 self)
 Add to MetaCart
The aim of this paper is to describe the theory and implementation of the Elliptic Curve Primality Proving algorithm.
Discrete Logarithms in Finite Fields and Their Cryptographic Significance
, 1984
"... Given a primitive element g of a finite field GF(q), the discrete logarithm of a nonzero element u GF(q) is that integer k, 1 k q  1, for which u = g k . The wellknown problem of computing discrete logarithms in finite fields has acquired additional importance in recent years due to its appl ..."
Abstract

Cited by 103 (7 self)
 Add to MetaCart
Given a primitive element g of a finite field GF(q), the discrete logarithm of a nonzero element u GF(q) is that integer k, 1 k q  1, for which u = g k . The wellknown problem of computing discrete logarithms in finite fields has acquired additional importance in recent years due to its applicability in cryptography. Several cryptographic systems would become insecure if an efficient discrete logarithm algorithm were discovered. This paper surveys and analyzes known algorithms in this area, with special attention devoted to algorithms for the fields GF(2 n ). It appears that in order to be safe from attacks using these algorithms, the value of n for which GF(2 n ) is used in a cryptosystem has to be very large and carefully chosen. Due in large part to recent discoveries, discrete logarithms in fields GF(2 n ) are much easier to compute than in fields GF(p) with p prime. Hence the fields GF(2 n ) ought to be avoided in all cryptographic applications. On the other hand, ...
Algorithms in algebraic number theory
 Bull. Amer. Math. Soc
, 1992
"... Abstract. In this paper we discuss the basic problems of algorithmic algebraic number theory. The emphasis is on aspects that are of interest from a purely mathematical point of view, and practical issues are largely disregarded. We describe what has been done and, more importantly, what remains to ..."
Abstract

Cited by 55 (4 self)
 Add to MetaCart
(Show Context)
Abstract. In this paper we discuss the basic problems of algorithmic algebraic number theory. The emphasis is on aspects that are of interest from a purely mathematical point of view, and practical issues are largely disregarded. We describe what has been done and, more importantly, what remains to be done in the area. We hope to show that the study of algorithms not only increases our understanding of algebraic number fields but also stimulates our curiosity about them. The discussion is concentrated of three topics: the determination of Galois groups, the determination of the ring of integers of an algebraic number field, and the computation of the group of units and the class group of that ring of integers. 1.
Parallel Algorithms for Integer Factorisation
"... The problem of finding the prime factors of large composite numbers has always been of mathematical interest. With the advent of public key cryptosystems it is also of practical importance, because the security of some of these cryptosystems, such as the RivestShamirAdelman (RSA) system, depends o ..."
Abstract

Cited by 44 (17 self)
 Add to MetaCart
The problem of finding the prime factors of large composite numbers has always been of mathematical interest. With the advent of public key cryptosystems it is also of practical importance, because the security of some of these cryptosystems, such as the RivestShamirAdelman (RSA) system, depends on the difficulty of factoring the public keys. In recent years the best known integer factorisation algorithms have improved greatly, to the point where it is now easy to factor a 60decimal digit number, and possible to factor numbers larger than 120 decimal digits, given the availability of enough computing power. We describe several algorithms, including the elliptic curve method (ECM), and the multiplepolynomial quadratic sieve (MPQS) algorithm, and discuss their parallel implementation. It turns out that some of the algorithms are very well suited to parallel implementation. Doubling the degree of parallelism (i.e. the amount of hardware devoted to the problem) roughly increases the size of a number which can be factored in a fixed time by 3 decimal digits. Some recent computational results are mentioned – for example, the complete factorisation of the 617decimal digit Fermat number F11 = 2211 + 1 which was accomplished using ECM.
Information and Computation: Classical and Quantum Aspects
 REVIEWS OF MODERN PHYSICS
, 2001
"... Quantum theory has found a new field of applications in the realm of information and computation during the recent years. This paper reviews how quantum physics allows information coding in classically unexpected and subtle nonlocal ways, as well as information processing with an efficiency largely ..."
Abstract

Cited by 36 (3 self)
 Add to MetaCart
Quantum theory has found a new field of applications in the realm of information and computation during the recent years. This paper reviews how quantum physics allows information coding in classically unexpected and subtle nonlocal ways, as well as information processing with an efficiency largely surpassing that of the present and foreseeable classical computers. Some outstanding aspects of classical and quantum information theory will be addressed here. Quantum teleportation, dense coding, and quantum cryptography are discussed as a few samples of the impact of quanta in the transmission of information. Quantum logic gates and quantum algorithms are also discussed as instances of the improvement in information processing by a quantum computer. We provide finally some examples of current experimental
Implementing the asymptotically fast version of the elliptic curve primality proving algorithm
 Math. Comp
"... Abstract. The elliptic curve primality proving (ECPP) algorithm is one of the current fastest practical algorithms for proving the primality of large numbers. Its running time cannot be proven rigorously, but heuristic arguments show that it should run in time Õ((log N)5) to prove the primality of N ..."
Abstract

Cited by 34 (1 self)
 Add to MetaCart
(Show Context)
Abstract. The elliptic curve primality proving (ECPP) algorithm is one of the current fastest practical algorithms for proving the primality of large numbers. Its running time cannot be proven rigorously, but heuristic arguments show that it should run in time Õ((log N)5) to prove the primality of N. An asymptotically fast version of it, attributed to J. O. Shallit, runs in time Õ((log N)4). The aim of this article is to describe this version in more details, leading to actual implementations able to handle numbers with several thousands of decimal digits. 1.
Open Problems in Number Theoretic Complexity, II
"... this paper contains a list of 36 open problems in numbertheoretic complexity. We expect that none of these problems are easy; we are sure that many of them are hard. This list of problems reflects our own interests and should not be viewed as definitive. As the field changes and becomes deeper, new ..."
Abstract

Cited by 30 (0 self)
 Add to MetaCart
this paper contains a list of 36 open problems in numbertheoretic complexity. We expect that none of these problems are easy; we are sure that many of them are hard. This list of problems reflects our own interests and should not be viewed as definitive. As the field changes and becomes deeper, new problems will emerge and old problems will lose favor. Ideally there will be other `open problems' papers in future ANTS proceedings to help guide the field. It is likely that some of the problems presented here will remain open for the forseeable future. However, it is possible in some cases to make progress by solving subproblems, or by establishing reductions between problems, or by settling problems under the assumption of one or more well known hypotheses (e.g. the various extended Riemann hypotheses, NP 6= P; NP 6= coNP). For the sake of clarity we have often chosen to state a specific version of a problem rather than a general one. For example, questions about the integers modulo a prime often have natural generalizations to arbitrary finite fields, to arbitrary cyclic groups, or to problems with a composite modulus. Questions about the integers often have natural generalizations to the ring of integers in an algebraic number field, and questions about elliptic curves often generalize to arbitrary curves or abelian varieties. The problems presented here arose from many different places and times. To those whose research has generated these problems or has contributed to our present understanding of them but to whom inadequate acknowledgement is given here, we apologize. Our list of open problems is derived from an earlier `open problems' paper we wrote in 1986 [AM86]. When we wrote the first version of this paper, we feared that the problems presented were so difficult...
An overview of computational complexity
 Communications of the ACM
, 1983
"... foremost recognition of technical contributions to the computing community. The citation of Cook's achievements noted that "Dr. Cook has advanced our understanding of the complexity of computation in a significant and profound way. His seminal paper, The Complexity of Theorem Proving P ..."
Abstract

Cited by 28 (0 self)
 Add to MetaCart
(Show Context)
foremost recognition of technical contributions to the computing community. The citation of Cook's achievements noted that &quot;Dr. Cook has advanced our understanding of the complexity of computation in a significant and profound way. His seminal paper, The Complexity of Theorem Proving Procedures, presented at the 1971 ACM SIGACT Symposium on the Theory of Computing, laid the foundations for the theory of NPcompleteness. The ensuing exploration of the boundaries and nature of the NPcomplete class of problems has been one of the most active and important research activities in computer science for the last decade. Cook is well known for his influential results in fundamental areas of computer science. He has made significant contributions to complexity theory, to timespace tradeoffs in computation, and to logics for programming languages. His work is characterized by elegance and insights and has illuminated the very nature of computation.&quot; During 19701979, Cook did extensive work under grants from the