Results 1  10
of
71
Large Sample Sieve Estimation of SemiNonparametric Models
 Handbook of Econometrics
, 2007
"... Often researchers find parametric models restrictive and sensitive to deviations from the parametric specifications; seminonparametric models are more flexible and robust, but lead to other complications such as introducing infinite dimensional parameter spaces that may not be compact. The method o ..."
Abstract

Cited by 92 (17 self)
 Add to MetaCart
Often researchers find parametric models restrictive and sensitive to deviations from the parametric specifications; seminonparametric models are more flexible and robust, but lead to other complications such as introducing infinite dimensional parameter spaces that may not be compact. The method of sieves provides one way to tackle such complexities by optimizing an empirical criterion function over a sequence of approximating parameter spaces, called sieves, which are significantly less complex than the original parameter space. With different choices of criteria and sieves, the method of sieves is very flexible in estimating complicated econometric models. For example, it can simultaneously estimate the parametric and nonparametric components in seminonparametric models with or without constraints. It can easily incorporate prior information, often derived from economic theory, such as monotonicity, convexity, additivity, multiplicity, exclusion and nonnegativity. This chapter describes estimation of seminonparametric econometric models via the method of sieves. We present some general results on the large sample properties of the sieve estimates, including consistency of the sieve extremum estimates, convergence rates of the sieve Mestimates, pointwise normality of series estimates of regression functions, rootn asymptotic normality and efficiency of sieve estimates of smooth functionals of infinite dimensional parameters. Examples are used to illustrate the general results.
Sure independence screening for ultrahigh dimensional feature space
, 2006
"... Variable selection plays an important role in high dimensional statistical modeling which nowadays appears in many areas and is key to various scientific discoveries. For problems of large scale or dimensionality p, estimation accuracy and computational cost are two top concerns. In a recent paper, ..."
Abstract

Cited by 90 (12 self)
 Add to MetaCart
Variable selection plays an important role in high dimensional statistical modeling which nowadays appears in many areas and is key to various scientific discoveries. For problems of large scale or dimensionality p, estimation accuracy and computational cost are two top concerns. In a recent paper, Candes and Tao (2007) propose the Dantzig selector using L1 regularization and show that it achieves the ideal risk up to a logarithmic factor log p. Their innovative procedure and remarkable result are challenged when the dimensionality is ultra high as the factor log p can be large and their uniform uncertainty principle can fail. Motivated by these concerns, we introduce the concept of sure screening and propose a sure screening method based on a correlation learning, called the Sure Independence Screening (SIS), to reduce dimensionality from high to a moderate scale that is below sample size. In a fairly general asymptotic framework, the SIS is shown to have the sure screening property for even exponentially growing dimensionality. As a methodological extension, an iterative SIS (ISIS) is also proposed to enhance its finite sample performance. With dimension reduced accurately from high to below sample size, variable selection can be improved on both speed and accuracy, and can then be ac
Piecewise linear regularized solution paths
 Ann. Statist
, 2007
"... We consider the generic regularized optimization problem ˆ β(λ) = arg minβ L(y, Xβ) + λJ(β). Recently, Efron et al. (2004) have shown that for the Lasso – that is, if L is squared error loss and J(β) = ‖β‖1 is the l1 norm of β – the optimal coefficient path is piecewise linear, i.e., ∂ ˆ β(λ)/∂λ i ..."
Abstract

Cited by 83 (8 self)
 Add to MetaCart
We consider the generic regularized optimization problem ˆ β(λ) = arg minβ L(y, Xβ) + λJ(β). Recently, Efron et al. (2004) have shown that for the Lasso – that is, if L is squared error loss and J(β) = ‖β‖1 is the l1 norm of β – the optimal coefficient path is piecewise linear, i.e., ∂ ˆ β(λ)/∂λ is piecewise constant. We derive a general characterization of the properties of (loss L, penalty J) pairs which give piecewise linear coefficient paths. Such pairs allow for efficient generation of the full regularized coefficient paths. We investigate the nature of efficient path following algorithms which arise. We use our results to suggest robust versions of the Lasso for regression and classification, and to develop new, efficient algorithms for existing problems in the literature, including Mammen & van de Geer’s Locally Adaptive Regression Splines. 1
Onestep sparse estimates in nonconcave penalized likelihood models. Ann. Statist., to appear. 36 Proof of Theorems 2(ii) and 4 Proof of Theorem 2(ii). To prove asymptotic normality for ˆφ n1, note that by (A.23), for αn with ‖αn‖ = 1 and νn = αnHnαn, n 1
 n1) = I1 + I2 + I3, (S.1) where I2 = λn(nνn) −1/2 α T n G−1 11 Wns/2 , I3
, 2008
"... Fan and Li propose a family of variable selection methods via penalized likelihood using concave penalty functions. The nonconcave penalized likelihood estimators enjoy the oracle properties, but maximizing the penalized likelihood function is computationally challenging, because the objective funct ..."
Abstract

Cited by 58 (0 self)
 Add to MetaCart
Fan and Li propose a family of variable selection methods via penalized likelihood using concave penalty functions. The nonconcave penalized likelihood estimators enjoy the oracle properties, but maximizing the penalized likelihood function is computationally challenging, because the objective function is nondifferentiable and nonconcave. In this article, we propose a new unified algorithm based on the local linear approximation (LLA) for maximizing the penalized likelihood for a broad class of concave penalty functions. Convergence and other theoretical properties of the LLA algorithm are established. A distinguished feature of the LLA algorithm is that at each LLA step, the LLA estimator can naturally adopt a sparse representation. Thus, we suggest using the onestep LLA estimator from the LLA algorithm as the final estimates. Statistically, we show that if the regularization parameter is appropriately chosen, the onestep LLA estimates enjoy the oracle properties with good initial estimators. Computationally, the onestep LLA estimation methods dramatically reduce the computational cost in maximizing the nonconcave penalized likelihood. We conduct some Monte Carlo simulation to assess the finite sample performance of the onestep sparse estimation methods. The results are very encouraging. 1. Introduction. Variable
Sparsistency and rates of convergence in large covariance matrices estimation
, 2007
"... This paper studies the sparsistency and rates of convergence for estimating sparse covariance and precision matrices based on penalized likelihood with nonconvex penalty functions. Here, sparsistency refers to the property that all parameters that are zero are actually estimated as zero with probabi ..."
Abstract

Cited by 43 (5 self)
 Add to MetaCart
This paper studies the sparsistency and rates of convergence for estimating sparse covariance and precision matrices based on penalized likelihood with nonconvex penalty functions. Here, sparsistency refers to the property that all parameters that are zero are actually estimated as zero with probability tending to one. Depending on the case of applications, sparsity priori may occur on the covariance matrix, its inverse or its Cholesky decomposition. We study these three sparsity exploration problems under a unified framework with a general penalty function. We show that the rates of convergence for these problems under the Frobenius norm are of order (sn log pn/n) 1/2, where sn is the number of nonzero elements, pn is the size of the covariance matrix and n is the sample size. This explicitly spells out the contribution of highdimensionality is merely of a logarithmic factor. The conditions on the rate with which the tuning parameter λn goes to 0 have been made explicit and compared under different penalties. As a result, for the L1penalty, to guarantee the sparsistency and optimal rate of convergence, the number of nonzero elements should be small: s ′ n = O(pn) at most, among O(p2 n) parameters, for estimating sparse covariance or correlation matrix, sparse precision or inverse correlation matrix or sparse Cholesky factor, where s ′ n is the number of the nonzero elements on the offdiagonal entries. On the other hand, using the SCAD or hardthresholding penalty functions, there is no such a restriction. 1. Introduction. Covariance
Asymptotic properties of bridge estimators in sparse highdimensional regression models
 Ann. Statist
, 2007
"... We study the asymptotic properties of bridge estimators in sparse, highdimensional, linear regression models when the number of covariates may increase to infinity with the sample size. We are particularly interested in the use of bridge estimators to distinguish between covariates whose coefficien ..."
Abstract

Cited by 40 (9 self)
 Add to MetaCart
We study the asymptotic properties of bridge estimators in sparse, highdimensional, linear regression models when the number of covariates may increase to infinity with the sample size. We are particularly interested in the use of bridge estimators to distinguish between covariates whose coefficients are zero and covariates whose coefficients are nonzero. We show that under appropriate conditions, bridge estimators correctly select covariates with nonzero coefficients with probability converging to one and that the estimators of nonzero coefficients have the same asymptotic distribution that they would have if the zero coefficients were known in advance. Thus, bridge estimators have an oracle property in the sense of Fan and Li [J. Amer. Statist. Assoc. 96 (2001) 1348–1360] and Fan and Peng [Ann. Statist. 32 (2004) 928–961]. In general, the oracle property holds only if the number of covariates is smaller than the sample size. However, under a partial orthogonality condition in which the covariates of the zero coefficients are uncorrelated or weakly correlated with the covariates of nonzero coefficients, we show that marginal bridge estimators can correctly distinguish between covariates with nonzero and zero coefficients with probability converging to one even when the number of covariates is greater than the sample size.
Variable Selection Using MM Algorithm
 Annals of Statistics
, 2005
"... Variable selection is fundamental to highdimensional statistical modeling. Many variable selection techniques may be implemented by maximum penalized likelihood using various penalty functions. Optimizing the penalized likelihood function is often challenging because it may be nondifferentiable and ..."
Abstract

Cited by 38 (4 self)
 Add to MetaCart
Variable selection is fundamental to highdimensional statistical modeling. Many variable selection techniques may be implemented by maximum penalized likelihood using various penalty functions. Optimizing the penalized likelihood function is often challenging because it may be nondifferentiable and/or nonconcave. This article proposes a new class of algorithms for finding a maximizer of the penalized likelihood for a broad class of penalty functions. These algorithms operate by perturbing the penalty function slightly to render it differentiable, then optimizing this differentiable function using a minorize–maximize (MM) algorithm. MM algorithms are useful extensions of the wellknown class of EM algorithms, a fact that allows us to analyze the local and global convergence of the proposed algorithm using some of the techniques employed for EM algorithms. In particular, we prove that when our MM algorithms converge, they must converge to a desirable point; we also discuss conditions under which this convergence may be guaranteed. We exploit the Newton–Raphsonlike aspect of these algorithms
Partial Correlation Estimation by Joint Sparse Regression Models
 JASA
, 2008
"... In this article, we propose a computationally efficient approach—space (Sparse PArtial Correlation Estimation)—for selecting nonzero partial correlations under the highdimensionlowsamplesize setting. This method assumes the overall sparsity of the partial correlation matrix and employs sparse re ..."
Abstract

Cited by 37 (5 self)
 Add to MetaCart
In this article, we propose a computationally efficient approach—space (Sparse PArtial Correlation Estimation)—for selecting nonzero partial correlations under the highdimensionlowsamplesize setting. This method assumes the overall sparsity of the partial correlation matrix and employs sparse regression techniques for model fitting. We illustrate the performance of space by extensive simulation studies. It is shown that space performs well in both nonzero partial correlation selection and the identification of hub variables, and also outperforms two existing methods. We then apply space to a microarray breast cancer dataset and identify a set of hub genes that may provide important insights on genetic regulatory networks. Finally, we prove that, under a set of suitable assumptions, the proposed procedure is asymptotically consistent in terms of model selection and parameter estimation.
Adaptive Lasso for sparse highdimensional regression
 University of Iowa
, 2006
"... Summary. We study the asymptotic properties of adaptive LASSO estimators in sparse, highdimensional, linear regression models when the number of covariates may increase with the sample size. We consider variable selection using the adaptive LASSO, where the L1 norms in the penalty are reweighted b ..."
Abstract

Cited by 36 (4 self)
 Add to MetaCart
Summary. We study the asymptotic properties of adaptive LASSO estimators in sparse, highdimensional, linear regression models when the number of covariates may increase with the sample size. We consider variable selection using the adaptive LASSO, where the L1 norms in the penalty are reweighted by datadependent weights. We show that, if a reasonable initial estimator is available, then under appropriate conditions, adaptive LASSO correctly select covariates with nonzero coefficients with probability converging to one and that the estimators of nonzero coefficients have the same asymptotic distribution that they would have if the zero coefficients were known in advance. Thus, the adaptive LASSO has an oracle property in the sense of Fan and Li (2001) and Fan and Peng (2004). In addition, under a partial orthogonality condition in which the covariates with zero coefficients are weakly correlated with the covariates with nonzero coefficients, univariate regression can be used to obtain the initial estimator. With this initial estimator, adaptive LASSO has the oracle property even when the number of covariates is greater than the sample size. Key Words and phrases. Penalized regression, highdimensional data, variable selection, asymptotic normality, oracle property, zeroconsistency. Short title. Sparse highdimensional regression
Statistical challenges with high dimensionality: Feature selection in knowledge discovery
 Proceedings of the International Congress of Mathematicians
, 2006
"... Abstract. Technological innovations have revolutionized the process of scientific research and knowledge discovery. The availability of massive data and challenges from frontiers of research and development have reshaped statistical thinking, data analysis and theoretical studies. The challenges of ..."
Abstract

Cited by 35 (9 self)
 Add to MetaCart
Abstract. Technological innovations have revolutionized the process of scientific research and knowledge discovery. The availability of massive data and challenges from frontiers of research and development have reshaped statistical thinking, data analysis and theoretical studies. The challenges of highdimensionality arise in diverse fields of sciences and the humanities, ranging from computational biology and health studies to financial engineering and risk management. In all of these fields, variable selection and feature extraction are crucial for knowledge discovery. We first give a comprehensive overview of statistical challenges with high dimensionality in these diverse disciplines. We then approach the problem of variable selection and feature extraction using a unified framework: penalized likelihood methods. Issues relevant to the choice of penalty functions are addressed. We demonstrate that for a host of statistical problems, as long as the dimensionality is not excessively large, we can estimate the model parameters as well as if the best model is known in advance. The persistence property in risk minimization is also addressed. The applicability of such a theory and method to diverse statistical problems is demonstrated. Other related problems with highdimensionality are also discussed.