Results 1  10
of
73
Compact routing schemes
 in SPAA ’01: Proceedings of the thirteenth annual ACM symposium on Parallel algorithms and architectures
"... We describe several compact routing schemes for general weighted undirected networks. Our schemes are simple and easy to implement. The routing tables stored at the nodes of the network are all very small. The headers attached to the routed messages, including the name of the destination, are extrem ..."
Abstract

Cited by 201 (7 self)
 Add to MetaCart
(Show Context)
We describe several compact routing schemes for general weighted undirected networks. Our schemes are simple and easy to implement. The routing tables stored at the nodes of the network are all very small. The headers attached to the routed messages, including the name of the destination, are extremely short. The routing decision at each node takes constant time. Yet, the stretch of these routing schemes, i.e., the worst ratio between the cost of the path on which a packet is routed and the cost of the cheapest path from source to destination, is a small constant. Our schemes achieve a nearoptimal tradeoff between the size of the routing tables used and the resulting stretch. More specifically, we obtain: 1. A routing scheme that uses only ~ O(n 1=2) bits of memory at each node of an nnode network that has stretch 3. The space is optimal, up to logarithmic factors, in the sense that
A Tradeoff between Space and Efficiency for Routing Tables
, 1988
"... Abstract. Two conflicting goals play a crucial role in the design of routing schemes for communication networks. A routing scheme should use paths that are as short as possible for routing messages in the network, while keeping the routing information stored in the processors ’ local memory as succi ..."
Abstract

Cited by 137 (5 self)
 Add to MetaCart
(Show Context)
Abstract. Two conflicting goals play a crucial role in the design of routing schemes for communication networks. A routing scheme should use paths that are as short as possible for routing messages in the network, while keeping the routing information stored in the processors ’ local memory as succinct as possible. The efficiency of a routing scheme is measured in terms of its stretch factorthe maximum ratio between the length of a route computed by the scheme and that of a shortest path connecting the same pair of vertices. Most previous work has concentrated on finding good routing schemes (with a small fixed stretch factor) for special classes of network topologies. In this paper the problem for general networks is studied, and the entire range of possible stretch factors is examined. The results exhibit a tradeoff between the efficiency of a routing scheme and its space requirements. Almost tight upper and lower bounds for this tradeoff are presented. Specifically, it is proved that any routing scheme for general nvertex networks that achieves a stretch factor k 2 1 must use a total of Q(n ‘+“fzLcJ)) bits of routing information in the networks. This lower bound is complemented by a family Z(k) of hierarchic:al routing schemes (for every k z 1) for unitcost general networks, which guarantee a stretch factor of O(k), require storing a total of O(k. n ‘+(““logn) bits of routing information in the network, name the vertices with O(log’n)bit names and use O(logn)bit headers.
Compact Routing with Minimum Stretch
 Journal of Algorithms
"... We present the first universal compact routing algorithm with maximum stretch bounded by 3 that uses sublinear space at every vertex. The algorithm uses local routing tables of size O(n 2=3 log 4=3 n) and achieves paths that are most 3 times the length of the shortest path distances for all node ..."
Abstract

Cited by 112 (5 self)
 Add to MetaCart
(Show Context)
We present the first universal compact routing algorithm with maximum stretch bounded by 3 that uses sublinear space at every vertex. The algorithm uses local routing tables of size O(n 2=3 log 4=3 n) and achieves paths that are most 3 times the length of the shortest path distances for all nodes in an arbitrary weighted undirected network. This answers an open question of Gavoille and Gengler who showed that any universal compact routing algorithm with maximum stretch strictly less than 3 must use\Omega\Gamma n) local space at some vertex. 1 Introduction Let G = (V; E) with jV j = n be a labeled undirected network. Assuming that a positive cost, or distance is assigned with each edge, the stretch of path p(u; v) from node u to node v is defined as jp(u;v)j jd(u;v)j , where jd(u; v)j is the length of the shortest u \Gamma v path. The approximate allpairs shortest path problem involves a tradeoff of stretch against time short paths with stretch bounded by a constant are com...
Excluded Minors, Network Decomposition, and Multicommodity Flow
, 1993
"... In this paper we show that, given a graph and parameters ffi and r, we can find either a Kr;r minor or an edgecut of size O(mr=ffi) whose removal yields components of weak diameter O(r 2 ffi); i.e., every pair of nodes in such a component are at distance O(r 2 ffi) in the original graph. Usi ..."
Abstract

Cited by 109 (6 self)
 Add to MetaCart
In this paper we show that, given a graph and parameters ffi and r, we can find either a Kr;r minor or an edgecut of size O(mr=ffi) whose removal yields components of weak diameter O(r 2 ffi); i.e., every pair of nodes in such a component are at distance O(r 2 ffi) in the original graph. Using this lemma, we improve the best known bounds for the mincut maxflow ratio for multicommodity flows in graphs with forbidden small minors. In general graphs, it was known that the ratio is O(log k) for the uniformdemand case (the case where there is a unitdemand commodity between every pair of nodes), and that the ratio is O(log 2 k) for arbitrary demands, where k is the number of commodities. In this paper we show that for graphs excluding any fixed graph as a minor (e.g. planar graphs or boundedgenus graphs), the ratio is O(1) for the uniformdemand case and O(log k) for the arbitrary demand case. For such graphs, our method yields minratio cut approximation algorithms wit...
Gem: graph embedding for routing and datacentric storage in sensor networks without geographic information
, 2003
"... Information ..."
Approximating a Finite Metric by a Small Number of Tree Metrics
 In Proceedings of the 39th Annual IEEE Symposium on Foundations of Computer Science
, 1998
"... Bartal [4, 5] gave a randomized polynomial time algorithm that given any n point metric G, constructs a tree T such that the expected stretch (distortion) of any edge is at most O(log n log log n). His result has found several applications and in particular has resulted in approximation algorithms f ..."
Abstract

Cited by 85 (10 self)
 Add to MetaCart
(Show Context)
Bartal [4, 5] gave a randomized polynomial time algorithm that given any n point metric G, constructs a tree T such that the expected stretch (distortion) of any edge is at most O(log n log log n). His result has found several applications and in particular has resulted in approximation algorithms for many graph optimization problems. However approximation algorithms based on his
Compact Distributed Data Structures for Adaptive Routing
 In Proc. 21st ACM Symp. on Theory of Computing
, 1989
"... In designing a routing scheme for a communication network it is desirable to use as short as possible paths for routing messages, while keeping the routing information stored in the processors' local memory as succinct as possible. The efficiency of a routing scheme is measured in terms of its ..."
Abstract

Cited by 73 (7 self)
 Add to MetaCart
(Show Context)
In designing a routing scheme for a communication network it is desirable to use as short as possible paths for routing messages, while keeping the routing information stored in the processors' local memory as succinct as possible. The efficiency of a routing scheme is measured in terms of its stretch factor  the maximum ratio between the cost of a route computed by the scheme and that of a cheapest path connecting the same pair of vertices. This paper presents a family of adaptive routing schemes for general networks. The hierarchical schemes HS k (for every fixed k 1) guarantee a stretch factor of O(k 2 \Delta 3 k ) and require storing at most O \Gamma kn 2 k log n \Delta bits of routing information per vertex. The new important features, that make the schemes appropriate for adaptive use, are ffl applicability to networks with arbitrary edge costs; ffl nameindependence, i.e., usage of original names; ffl a balanced distribution of the memory; ffl an efficient onli...
Compact and Localized Distributed Data Structures
 JOURNAL OF DISTRIBUTED COMPUTING
, 2001
"... This survey concerns the role of data structures for compactly storing and representing various types of information in a localized and distributed fashion. Traditional approaches to data representation are based on global data structures, which require access to the entire structure even if the sou ..."
Abstract

Cited by 73 (27 self)
 Add to MetaCart
This survey concerns the role of data structures for compactly storing and representing various types of information in a localized and distributed fashion. Traditional approaches to data representation are based on global data structures, which require access to the entire structure even if the sought information involves only a small and local set of entities. In contrast, localized data representation schemes are based on breaking the information into small local pieces, or labels, selected in a way that allows one to infer information regarding a small set of entities directly from their labels, without using any additional (global) information. The survey focuses on combinatorial and algorithmic techniques, and covers complexity results on various applications, including compact localized schemes for message routing in communication networks, and adjacency and distance labeling schemes.
Bypassing the embedding: Algorithms for lowdimensional metrics
 In Proceedings of the 36th ACM Symposium on the Theory of Computing (STOC
, 2004
"... The doubling dimension of a metric is the smallest k such that any ball of radius 2r can be covered using 2 k balls of radius r. This concept for abstract metrics has been proposed as a natural analog to the dimension of a Euclidean space. If we could embed metrics with low doubling dimension into l ..."
Abstract

Cited by 66 (4 self)
 Add to MetaCart
(Show Context)
The doubling dimension of a metric is the smallest k such that any ball of radius 2r can be covered using 2 k balls of radius r. This concept for abstract metrics has been proposed as a natural analog to the dimension of a Euclidean space. If we could embed metrics with low doubling dimension into low dimensional Euclidean spaces, they would inherit several algorithmic and structural properties of the Euclidean spaces. Unfortunately however, such a restriction on dimension does not suffice to guarantee embeddibility in a normed space. In this paper we explore the option of bypassing the embedding. In particular we show the following for low dimensional metrics: • Quasipolynomial time (1+ɛ)approximation algorithm for various optimization problems such as TSP, kmedian and facility location. • (1 + ɛ)approximate distance labeling scheme with optimal label length. • (1+ɛ)stretch polylogarithmic storage routing scheme.
Distance Estimation and Object Location via Rings of Neighbors
 In 24 th Annual ACM Symposium on Principles of Distributed Computing (PODC
, 2005
"... We consider four problems on distance estimation and object location which share the common flavor of capturing global information via informative node labels: lowstretch routing schemes [47], distance labeling [24], searchable small worlds [30], and triangulationbased distance estimation [33]. Fo ..."
Abstract

Cited by 66 (5 self)
 Add to MetaCart
We consider four problems on distance estimation and object location which share the common flavor of capturing global information via informative node labels: lowstretch routing schemes [47], distance labeling [24], searchable small worlds [30], and triangulationbased distance estimation [33]. Focusing on metrics of low doubling dimension, we approach these problems with a common technique called rings of neighbors, which refers to a sparse distributed data structure that underlies all our constructions. Apart from improving the previously known bounds for these problems, our contributions include extending Kleinberg’s small world model to doubling metrics, and a short proof of the main result in Chan et al. [14]. Doubling dimension is a notion of dimensionality for general metrics that has recently become a useful algorithmic concept in the theoretical computer science literature. 1