Results 11  20
of
69
An Oxford Survey of Order Sorted Algebra
 MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE
, 1994
"... ..."
An Algebraic Approach to Mixins and Modularity
 ALP '96  5th Intl. Conf. on Algebraic and Logic Programming, number 1139 in Lecture Notes in Computer Science
, 1996
"... . We present an algebraic formalization of the notion of mixin module, i.e. a module where the definition of some components is deferred . Moreover, we define a set of basic operators for composing mixin modules, intended to be a kernel language with clean semantics in which to express more complex ..."
Abstract

Cited by 22 (4 self)
 Add to MetaCart
. We present an algebraic formalization of the notion of mixin module, i.e. a module where the definition of some components is deferred . Moreover, we define a set of basic operators for composing mixin modules, intended to be a kernel language with clean semantics in which to express more complex operators of existing modular languages, including variants of inheritance in object oriented programming. The semantics of the operators is given in an "institution independent" way, i.e. is parameterized on the semantic framework modeling the underlying core language. Introduction One of the major contributions of object oriented programming has been the discover of inheritance as primary mean for incremental software development. In object oriented languages, an heir class can extend the definition of the parent class adding new methods, as well as redefining old methods, overriding their preceding definitions (sometimes the precedence is given to the parent, see [7]). Note that, since ...
An Extensible Module Algebra For Maude
, 1998
"... The fact that rewriting logic and Maude are reflective, so that rewriting logic specifications can be manipulated as terms at the metalevel, opens up the possibility of defining an algebra of module composition and transformation operations within the logic. This makes such a module algebra easily m ..."
Abstract

Cited by 19 (10 self)
 Add to MetaCart
The fact that rewriting logic and Maude are reflective, so that rewriting logic specifications can be manipulated as terms at the metalevel, opens up the possibility of defining an algebra of module composition and transformation operations within the logic. This makes such a module algebra easily modifiable and extensible, enables the implementation of language extensions within Maude, and allows formal reasoning about the module operations themselves. In this paper we discuss in detail the Maude implementation of a specific choice of operations for a module algebra of this type, supporting module operations in the Clear/OBJ tradition as well as the transformation of objectoriented modules into system modules. 1
Composing Hidden Information Modules over Inclusive Institutions
 In From ObjectOrientation to Formal Methods: Essays in Honor of JohanOle Dahl
, 2003
"... This paper studies the composition of modules that can hide information, over a very general class of logical systems called inclusive institutions. Two semantics are given for composition of such modules using five familiar operations, and a property called conservativity is shown necessary and suf ..."
Abstract

Cited by 18 (3 self)
 Add to MetaCart
This paper studies the composition of modules that can hide information, over a very general class of logical systems called inclusive institutions. Two semantics are given for composition of such modules using five familiar operations, and a property called conservativity is shown necessary and sufficient for these semantics to agree. The first semantics extracts the visible properties of the result of composing the visible and hidden parts of modules, while the second uses only the visible properties of the components; the semantics agree when the visible consequences of hidden information are enough to determine the result of the composition. A number of "laws of software composition" are proved relating the composition operations. Inclusive institutions simplify many proofs.
Extending Development Graphs With Hiding
, 2001
"... Development graphs are a tool for dealing with structured specifications in a formal program development in order to ease the management of change and reusing proofs. In this work, we extend development graphs with hiding (e.g. hidden operations). Hiding is a particularly difficult to realize operat ..."
Abstract

Cited by 15 (10 self)
 Add to MetaCart
Development graphs are a tool for dealing with structured specifications in a formal program development in order to ease the management of change and reusing proofs. In this work, we extend development graphs with hiding (e.g. hidden operations). Hiding is a particularly difficult to realize operation, since it does not admit such a good decomposition of the involved specifications as other structuring operations do. We develop both a semantics and proof rules for development graphs with hiding. The rules are proven to be sound, and also complete relative to an oracle for conservative extensions. We also show that an absolute complete set of rules cannot exist. The whole framework is developed in a way independent of the underlying logical system (and thus also does not prescribe the nature of the parts of a specification that may be hidden).
Structured theory presentations and logic representations
 ANNALS OF PURE AND APPLIED LOGIC
, 1994
"... The purpose of a logical framework such as LF is to provide a language for defining logical systems suitable for use in a logicindependent proof development environment. All inferential activity in an object logic (in particular, proof search) is to be conducted in the logical framework via the ..."
Abstract

Cited by 14 (2 self)
 Add to MetaCart
The purpose of a logical framework such as LF is to provide a language for defining logical systems suitable for use in a logicindependent proof development environment. All inferential activity in an object logic (in particular, proof search) is to be conducted in the logical framework via the representation of that logic in the framework. An important tool for controlling search in an object logic, the need for which is motivated by the difficulty of reasoning about large and complex systems, is the use of structured theory presentations. In this paper a rudimentary language of structured theory presentations is presented, and the use of this structure in proof search for an arbitrary object logic is explored. The behaviour of structured theory presentations under representation in a logical framework is studied, focusing on the problem of "lifting" presentations from the object logic to the metalogic of the framework. The topic of imposing structure on logic presentations...
Structured Theories and Institutions
, 1999
"... Category theory provides an excellent foundation for studying structured specifications and their composition. For example, theories can be structured together in a diagram, and their composition can be obtained as a colimit. There is, however, a growing awareness, both in theory and in specificatio ..."
Abstract

Cited by 14 (3 self)
 Add to MetaCart
Category theory provides an excellent foundation for studying structured specifications and their composition. For example, theories can be structured together in a diagram, and their composition can be obtained as a colimit. There is, however, a growing awareness, both in theory and in specification practice, that structured theories should not be viewed just as the "scaffolding" used to build unstructured theories: they should become firstclass citizens in the specification process. Given a logic formalized as an institution I, we therefore ask whether there is a good definition of the category of Istructured theories, and whether they can be naturally regarded as the ordinary theories of an appropriate institution S(I) generalizing the original institution I. We answer both question in the affirmative, and study good properties of the institution I inherited by S(I). We show that, under natural conditions, a number of important properties are indeed inherited, including cocompleteness of the category of theories, liberality, and extension of the basic framework by freeness constraints. The results presented here have been used as a foundation for the module algebra of the Maude language, and seem promising as a semantic basis for a generic module algebra that could be both specified and executed within the logical framework of rewriting logic. 1
Logicbased ontology comparison and module extraction, with an application to DLLite
 ARTIFICIAL INTELLIGENCE
, 2010
"... We develop a formal framework for comparing different versions of DLLite ontologies. The main feature of our approach is that we take into account the vocabulary ( = signature) with respect to which one wants to compare ontologies. Five variants of difference and inseparability relations between on ..."
Abstract

Cited by 13 (6 self)
 Add to MetaCart
We develop a formal framework for comparing different versions of DLLite ontologies. The main feature of our approach is that we take into account the vocabulary ( = signature) with respect to which one wants to compare ontologies. Five variants of difference and inseparability relations between ontologies are introduced and their respective applications for ontology development and maintenance discussed. These variants are obtained by generalising the notion of conservative extension from mathematical logic and by distinguishing between differences that can be observed among concept inclusions, answers to queries over ABoxes, by taking into account additional context ontologies, and by considering a modeltheoretic, languageindependent notion of difference. We compare these variants, study their metaproperties, determine the computational complexity of the corresponding reasoning tasks, and present decision algorithms. Moreover, we show that checking inseparability can be automated by means of encoding into QBF satisfiability and using offtheshelf general purpose QBF solvers. Inseparability relations between ontologies are then used to develop a formal framework for (minimal) module extraction. We demonstrate that different types of minimal modules induced by these inseparability relations can be automatically extracted from realworld mediumsize DLLite ontologies by composing the tractable syntactic localitybased module extraction algorithm with nontractable extraction algorithms using the multiengine QBF solver aqme. Finally, we explore the relationship between uniform interpolation (or forgetting) and inseparability between ontologies.
Type class polymorphism in an institutional framework
 IN JOSÉ FIADEIRO, EDITOR, 17TH WADT, LECTURE NOTES IN COMPUTER SCIENCE
, 2005
"... Higherorder logic with shallow type class polymorphism is widely used as a specification formalism. Its polymorphic entities (types, operators, axioms) can easily be equipped with a ‘naive ’ semantics defined in terms of collections of instances. However, this semantics has the unpleasant property ..."
Abstract

Cited by 12 (7 self)
 Add to MetaCart
Higherorder logic with shallow type class polymorphism is widely used as a specification formalism. Its polymorphic entities (types, operators, axioms) can easily be equipped with a ‘naive ’ semantics defined in terms of collections of instances. However, this semantics has the unpleasant property that while model reduction preserves satisfaction of sentences, model expansion generally does not. In other words, unless further measures are taken, type class polymorphism fails to constitute a proper institution, being only a socalled rps preinstitution; this is unfortunate, as it means that one cannot use institutionindependent or heterogeneous structuring languages, proof calculi, and tools with it. Here, we suggest to remedy this problem by modifying the notion of model to include information also about its potential future extensions. Our construction works at a high level of generality in the sense that it provides, for any preinstitution, an institution in which the original preinstitution can be represented. The semantics of polymorphism used in the specification language HasCasl makes use of this result. In fact, HasCasl’s polymorphism is a special case of a general notion of polymorphism in institutions introduced here, and our construction leads to the right notion of semantic consequence when applied to this generic polymorphism. The appropriateness of the construction for other frameworks that share the same problem depends on methodological questions to be decided case by case. In particular, it turns out that our method is apparently unsuitable for observational logics, while it works well with abstract state machine formalisms such as statebased Casl.
Proof Systems for Structured Specifications and Their Refinements
, 1999
"... Reasoning about specifications is one of the fundamental activities in the process of formal program development. This ranges from proving the consequences of a specification, during the prototyping or testing phase for a requirements speci cation, to proving the correctness of refinements (or imple ..."
Abstract

Cited by 12 (5 self)
 Add to MetaCart
Reasoning about specifications is one of the fundamental activities in the process of formal program development. This ranges from proving the consequences of a specification, during the prototyping or testing phase for a requirements speci cation, to proving the correctness of refinements (or implementations) of specifications. The main proof techniques for algebraic specifications have their origin in equational Horn logic and term rewriting. These proof methods have been well studied in the case of nonstructured speci cations (see Chapters 9 and 10). For large systems of specifications built using the structuring operators of speci cation languages, relatively few proof techniques have been developed yet; for such proof systems, see [SB83, HST94, Wir91, Far92, Cen94, HWB97]. In this chapter we focus on proof systems designed particularly for modular specifications. The aim is to concentrate on the structuring concepts, while abstracting as much as possible from the par...