Results 1 
4 of
4
Observational Proofs with Critical Contexts
 In Fundamental Approaches to Software Engineering
, 1998
"... Observability concepts contribute to a better understanding of software correctness. In order to prove observational properties, the concept of Context Induction has been developed by Hennicker [10]. We propose in this paper to embed Context Induction in the implicit induction framework of [8]. The ..."
Abstract

Cited by 24 (3 self)
 Add to MetaCart
Observability concepts contribute to a better understanding of software correctness. In order to prove observational properties, the concept of Context Induction has been developed by Hennicker [10]. We propose in this paper to embed Context Induction in the implicit induction framework of [8]. The proof system we obtain applies to conditional specifications. It allows for many rewriting techniques and for the refutation of false observational conjectures. Under reasonable assumptions our method is refutationally complete, i.e. it can refute any conjecture which is not observationally valid. Moreover this proof system is operational: it has been implemented within the Spike prover and interesting computer experiments are reported.
Observational Specifications and the Indistinguishability Assumption
 Theoretical Computer Science
, 1995
"... To establish the correctness of some software w.r.t. its formal specification is widely recognized as a difficult task. A first simplification is obtained when the semantics of an algebraic specification is defined as the class of all algebras which correspond to the correct realizations of the spec ..."
Abstract

Cited by 17 (0 self)
 Add to MetaCart
To establish the correctness of some software w.r.t. its formal specification is widely recognized as a difficult task. A first simplification is obtained when the semantics of an algebraic specification is defined as the class of all algebras which correspond to the correct realizations of the specification. A software is then declared correct if it corresponds to some algebra of this class. We approach this goal by defining an observational satisfaction relation which is less restrictive than the usual satisfaction relation. Based on this notion we provide an institution for observational specifications. The idea is that the validity of an equational axiom should depend on an observational equality, instead of the usual equality. We show that it is not reasonable to expect an observational equality to be a congruence. We define an observational algebra as an algebra equipped with an observational equality which is an equivalence relation but not necessarily a congruence. We assume th...
Towards automated proofs of observational properties
 Discrete Mathematics in Theoretical Computer Science
, 2004
"... Observational theories are a generalization of firstorder theories where two objects are observationally equal if they cannot be distinguished by experiments with observable results. Such experiments, called contexts, are usually infinite. Therefore, we consider a special finite set of contexts, ca ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
Observational theories are a generalization of firstorder theories where two objects are observationally equal if they cannot be distinguished by experiments with observable results. Such experiments, called contexts, are usually infinite. Therefore, we consider a special finite set of contexts, called covercontexts, “covering” all the observable contexts. Then, we show that to prove that two objects are observationally equal, it is sufficient to prove that they are equal (in the classical sense) under these covercontexts. We give methods based on rewriting techniques, for constructing such covercontexts for interesting classes of observational specifications.
Algebraic System Specification and Development: Survey and Annotated Bibliography  Second Edition 
, 1997
"... Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.5.4 Special Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.6 Semantics of Programming Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.6.1 Semantics of Ada . . . ..."
Abstract
 Add to MetaCart
Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.5.4 Special Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.6 Semantics of Programming Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.6.1 Semantics of Ada . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.6.2 Action Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.7 Specification Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.7.1 Early Algebraic Specification Languages . . . . . . . . . . . . . . . . . . . . . . . . 53 4.7.2 Recent Algebraic Specification Languages . . . . . . . . . . . . . . . . . . . . . . . 55 4.7.3 The Common Framework Initiative. . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5 Methodology 57 5.1 Development Phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.1.1 Applica...