Results 1  10
of
269
Compositional Model Checking
, 1999
"... We describe a method for reducing the complexity of temporal logic model checking in systems composed of many parallel processes. The goal is to check properties of the components of a system and then deduce global properties from these local properties. The main difficulty with this type of approac ..."
Abstract

Cited by 3218 (68 self)
 Add to MetaCart
We describe a method for reducing the complexity of temporal logic model checking in systems composed of many parallel processes. The goal is to check properties of the components of a system and then deduce global properties from these local properties. The main difficulty with this type of approach is that local properties are often not preserved at the global level. We present a general framework for using additional interface processes to model the environment for a component. These interface processes are typically much simpler than the full environment of the component. By composing a component with its interface processes and then checking properties of this composition, we can guarantee that these properties will be preserved at the global level. We give two example compositional systems based on the logic CTL*.
Automatic verification of finitestate concurrent systems using temporal logic specifications
 ACM Transactions on Programming Languages and Systems
, 1986
"... We give an efficient procedure for verifying that a finitestate concurrent system meets a specification expressed in a (propositional, branchingtime) temporal logic. Our algorithm has complexity linear in both the size of the specification and the size of the global state graph for the concurrent ..."
Abstract

Cited by 1384 (62 self)
 Add to MetaCart
We give an efficient procedure for verifying that a finitestate concurrent system meets a specification expressed in a (propositional, branchingtime) temporal logic. Our algorithm has complexity linear in both the size of the specification and the size of the global state graph for the concurrent system. We also show how this approach can be adapted to handle fairness. We argue that our technique can provide a practical alternative to manual proof construction or use of a mechanical theorem prover for verifying many finitestate concurrent systems. Experimental results show that state machines with several hundred states can be checked in a matter of seconds.
Temporal and modal logic
 HANDBOOK OF THEORETICAL COMPUTER SCIENCE
, 1995
"... We give a comprehensive and unifying survey of the theoretical aspects of Temporal and modal logic. ..."
Abstract

Cited by 1300 (17 self)
 Add to MetaCart
(Show Context)
We give a comprehensive and unifying survey of the theoretical aspects of Temporal and modal logic.
Design and Synthesis of Synchronization Skeletons Using Branching Time Temporal Logic
 In: Kozen, D., Ed., Logics of Programs
, 1982
"... We propose a method of constructing concurrent programs in which the synchronization skeleton of the program ~s automatically synthesized from a highlevel (branching time) Temporal Logic specification. The synchronization skeleton is an abstraction of the actual program where detail irrelevant to ..."
Abstract

Cited by 1019 (55 self)
 Add to MetaCart
We propose a method of constructing concurrent programs in which the synchronization skeleton of the program ~s automatically synthesized from a highlevel (branching time) Temporal Logic specification. The synchronization skeleton is an abstraction of the actual program where detail irrelevant to synchronization is
Dynamic Logic
 Handbook of Philosophical Logic
, 1984
"... ed to be true under the valuation u iff there exists an a 2 N such that the formula x = y is true under the valuation u[x=a], where u[x=a] agrees with u everywhere except x, on which it takes the value a. This definition involves a metalogical operation that produces u[x=a] from u for all possibl ..."
Abstract

Cited by 1008 (7 self)
 Add to MetaCart
ed to be true under the valuation u iff there exists an a 2 N such that the formula x = y is true under the valuation u[x=a], where u[x=a] agrees with u everywhere except x, on which it takes the value a. This definition involves a metalogical operation that produces u[x=a] from u for all possible values a 2 N. This operation becomes explicit in DL in the form of the program x := ?, called a nondeterministic or wildcard assignment. This is a rather unconventional program, since it is not effective; however, it is quite useful as a descriptive tool. A more conventional way to obtain a square root of y, if it exists, would be the program x := 0 ; while x < y do x := x + 1: (1) In DL, such programs are firstclass objects on a par with formulas, complete with a collection of operators for forming compound programs inductively from a basis of primitive programs. To discuss the effect of the execution of a program on the truth of a formula ', DL uses a modal construct <>', which
Reasoning about Infinite Computations
 Information and Computation
, 1994
"... We investigate extensions of temporal logic by connectives defined by finite automata on infinite words. We consider three different logics, corresponding to three different types of acceptance conditions (finite, looping and repeating) for the automata. It turns out, however, that these logics all ..."
Abstract

Cited by 316 (59 self)
 Add to MetaCart
(Show Context)
We investigate extensions of temporal logic by connectives defined by finite automata on infinite words. We consider three different logics, corresponding to three different types of acceptance conditions (finite, looping and repeating) for the automata. It turns out, however, that these logics all have the same expressive power and that their decision problems are all PSPACEcomplete. We also investigate connectives defined by alternating automata and show that they do not increase the expressive power of the logic or the complexity of the decision problem. 1 Introduction For many years, logics of programs have been tools for reasoning about the input/output behavior of programs. When dealing with concurrent or nonterminating processes (like operating systems) there is, however, a need to reason about infinite computations. Thus, instead of considering the first and last states of finite computations, we need to consider the infinite sequences of states that the program goes through...
An automatatheoretic approach to linear temporal logic
 Logics for Concurrency: Structure versus Automata, volume 1043 of Lecture Notes in Computer Science
, 1996
"... Abstract. The automatatheoretic approach to linear temporal logic uses the theory of automata as a unifying paradigm for program specification, verification, and synthesis. Both programs and specifications are in essence descriptions of computations. These computations can be viewed as words over s ..."
Abstract

Cited by 294 (27 self)
 Add to MetaCart
Abstract. The automatatheoretic approach to linear temporal logic uses the theory of automata as a unifying paradigm for program specification, verification, and synthesis. Both programs and specifications are in essence descriptions of computations. These computations can be viewed as words over some alphabet. Thus,programs and specificationscan be viewed as descriptions of languagesover some alphabet. The automatatheoretic perspective considers the relationships between programs and their specifications as relationships between languages.By translating programs and specifications to automata, questions about programs and their specifications can be reduced to questions about automata. More specifically, questions such as satisfiability of specifications and correctness of programs with respect to their specifications can be reduced to questions such as nonemptiness and containment of automata. Unlike classical automata theory, which focused on automata on finite words, the applications to program specification, verification, and synthesis, use automata on infinite words, since the computations in which we are interested are typically infinite. This paper provides an introduction to the theory of automata on infinite words and demonstrates its applications to program specification, verification, and synthesis. 1
Modelling Concurrency with Partial Orders
, 1986
"... Concurrency has been expressed variously in terms of formal languages (typically via the shuffle operator), partial orders, and temporal logic, inter alia. In this paper we extract from these three approaches a single hybrid approach having a rich language that mixes algebra and logic and having a n ..."
Abstract

Cited by 263 (18 self)
 Add to MetaCart
Concurrency has been expressed variously in terms of formal languages (typically via the shuffle operator), partial orders, and temporal logic, inter alia. In this paper we extract from these three approaches a single hybrid approach having a rich language that mixes algebra and logic and having a natural class of models of concurrent processes. The heart of the approach is a notion of partial string derived from the view of a string as a linearly ordered multiset by relaxing the linearity constraint, thereby permitting partially ordered multisets or pomsets. Just as sets of strings form languages, so do sets of pomsets form processes. We introduce a number of operations useful for specifying concurrent processes and demonstrate their utility on some basic examples. Although none of the operations is particularly oriented to nets it is nevertheless possible to use them to express processes constructed as a net of subprocesses, and more generally as a system consisting of components. Th...
Realtime logics: complexity and expressiveness
 INFORMATION AND COMPUTATION
, 1993
"... The theory of the natural numbers with linear order and monadic predicates underlies propositional linear temporal logic. To study temporal logics that are suitable for reasoning about realtime systems, we combine this classical theory of in nite state sequences with a theory of discrete time, via ..."
Abstract

Cited by 250 (16 self)
 Add to MetaCart
(Show Context)
The theory of the natural numbers with linear order and monadic predicates underlies propositional linear temporal logic. To study temporal logics that are suitable for reasoning about realtime systems, we combine this classical theory of in nite state sequences with a theory of discrete time, via a monotonic function that maps every state to its time. The resulting theory of timed state sequences is shown to be decidable, albeit nonelementary, and its expressive power is characterized by! regular sets. Several more expressive variants are proved to be highly undecidable. This framework allows us to classify a wide variety of realtime logics according to their complexity and expressiveness. Indeed, it follows that most formalisms proposed in the literature cannot be decided. We are, however, able to identify two elementary realtime temporal logics as expressively complete fragments of the theory of timed state sequences, and we present tableaubased decision procedures for checking validity. Consequently, these two formalisms are wellsuited for the speci cation and veri cation of realtime systems.
Logics and Models of Real Time: A Survey
"... We survey logicbased and automatabased languages and techniques for the specification and verification of realtime systems. In particular, we discuss three syntactic extensions of temporal logic: timebounded operators, freeze quantification, and time variables. We also discuss the extension of ..."
Abstract

Cited by 219 (15 self)
 Add to MetaCart
We survey logicbased and automatabased languages and techniques for the specification and verification of realtime systems. In particular, we discuss three syntactic extensions of temporal logic: timebounded operators, freeze quantification, and time variables. We also discuss the extension of finitestate machines with clocks and the extension of transition systems with time bounds on the transitions. All of the resulting notations can be interpreted over a variety of different models of time and computation, including linear and branching time, interleaving and true concurrency, discrete and continuous time. For each choice of syntax and semantics, we summarize the results that are known about expressive power, algorithmic finitestate verification, and deductive verification.