Results 1  10
of
276
Robust face recognition via sparse representation,” (preprint
 IEEE Trans. Pattern Analysis and Machine Intelligence
"... Abstract — We consider the problem of automatically recognizing human faces from frontal views with varying expression and illumination, as well as occlusion and disguise. We cast the recognition problem as one of classifying among multiple linear regression models, and argue that new theory from sp ..."
Abstract

Cited by 321 (22 self)
 Add to MetaCart
Abstract — We consider the problem of automatically recognizing human faces from frontal views with varying expression and illumination, as well as occlusion and disguise. We cast the recognition problem as one of classifying among multiple linear regression models, and argue that new theory from sparse signal representation offers the key to addressing this problem. Based on a sparse representation computed by ℓ 1minimization, we propose a general classification algorithm for (imagebased) object recognition. This new framework provides new insights into two crucial issues in face recognition: feature extraction and robustness to occlusion. For feature extraction, we show that if sparsity in the recognition problem is properly harnessed, the choice of features is no longer critical. What is critical, however, is whether the number of features is sufficiently large and whether the sparse representation is correctly computed. Unconventional features such as downsampled images and random projections perform just as well as conventional features such as Eigenfaces and Laplacianfaces, as long as the dimension of the feature space surpasses certain threshold, predicted by the theory of sparse representation. This framework can handle errors due to occlusion and corruption uniformly, by exploiting the fact that these errors are often sparse w.r.t. to the standard (pixel) basis. The theory of sparse representation helps predict how much occlusion the recognition algorithm can handle and how to choose the training images to maximize robustness to occlusion. We conduct extensive experiments on publicly available databases to verify the efficacy of the proposed algorithm, and corroborate the above claims.
A SignalProcessing Framework for Inverse Rendering
 In SIGGRAPH 01
, 2001
"... Realism in computergenerated images requires accurate input models for lighting, textures and BRDFs. One of the best ways of obtaining highquality data is through measurements of scene attributes from real photographs by inverse rendering. However, inverse rendering methods have been largely limit ..."
Abstract

Cited by 186 (18 self)
 Add to MetaCart
Realism in computergenerated images requires accurate input models for lighting, textures and BRDFs. One of the best ways of obtaining highquality data is through measurements of scene attributes from real photographs by inverse rendering. However, inverse rendering methods have been largely limited to settings with highly controlled lighting. One of the reasons for this is the lack of a coherent mathematical framework for inverse rendering under general illumination conditions. Our main contribution is the introduction of a signalprocessing framework which describes the reflected light field as a convolution of the lighting and BRDF, and expresses it mathematically as a product of spherical harmonic coefficients of the BRDF and the lighting. Inverse rendering can then be viewed as deconvolution. We apply this theory to a variety of problems in inverse rendering, explaining a number of previous empirical results. We will show why certain problems are illposed or numerically illconditioned, and why other problems are more amenable to solution. The theory developed here also leads to new practical representations and algorithms. For instance, we present a method to factor the lighting and BRDF from a small number of views, i.e. to estimate both simultaneously when neither is known.
An Efficient Representation for Irradiance Environment Maps
, 2001
"... We consider the rendering of diffuse objects under distant illumination, as specified by an environment map. Using an analytic expression for the irradiance in terms of spherical harmonic coefficients of the lighting, we show that one needs to compute and use only 9 coefficients, corresponding to th ..."
Abstract

Cited by 158 (10 self)
 Add to MetaCart
We consider the rendering of diffuse objects under distant illumination, as specified by an environment map. Using an analytic expression for the irradiance in terms of spherical harmonic coefficients of the lighting, we show that one needs to compute and use only 9 coefficients, corresponding to the lowestfrequency modes of the illumination, in order to achieve average errors of only 1%. In other words, the irradiance is insensitive to high frequencies in the lighting, and is well approximated using only 9 parameters. In fact, we show that the irradiance can be procedurally represented simply as a quadratic polynomial in the cartesian components of the surface normal, and give explicit formulae. These observations lead to a simple and efficient procedural rendering algorithm amenable to hardware implementation, a prefiltering method up to three orders of magnitude faster than previous techniques, and new representations for lighting design and imagebased rendering.
Robust Principal Component Analysis?
, 2009
"... This paper is about a curious phenomenon. Suppose we have a data matrix, which is the superposition of a lowrank component and a sparse component. Can we recover each component individually? We prove that under some suitable assumptions, it is possible to recover both the lowrank and the sparse co ..."
Abstract

Cited by 138 (6 self)
 Add to MetaCart
This paper is about a curious phenomenon. Suppose we have a data matrix, which is the superposition of a lowrank component and a sparse component. Can we recover each component individually? We prove that under some suitable assumptions, it is possible to recover both the lowrank and the sparse components exactly by solving a very convenient convex program called Principal Component Pursuit; among all feasible decompositions, simply minimize a weighted combination of the nuclear norm and of the ℓ1 norm. This suggests the possibility of a principled approach to robust principal component analysis since our methodology and results assert that one can recover the principal components of a data matrix even though a positive fraction of its entries are arbitrarily corrupted. This extends to the situation where a fraction of the entries are missing as well. We discuss an algorithm for solving this optimization problem, and present applications in the area of video surveillance, where our methodology allows for the detection of objects in a cluttered background, and in the area of face recognition, where it offers a principled way of removing shadows and specularities in images of faces.
Acquiring linear subspaces for face recognition under variable lighting
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2005
"... Previous work has demonstrated that the image variation of many objects (human faces in particular) under variable lighting can be effectively modeled by low dimensional linear spaces, even when there are multiple light sources and shadowing. Basis images spanning this space are usually obtained in ..."
Abstract

Cited by 133 (2 self)
 Add to MetaCart
Previous work has demonstrated that the image variation of many objects (human faces in particular) under variable lighting can be effectively modeled by low dimensional linear spaces, even when there are multiple light sources and shadowing. Basis images spanning this space are usually obtained in one of three ways: A large set of images of the object under different lighting conditions is acquired, and principal component analysis (PCA) is used to estimate a subspace. Alternatively, synthetic images are rendered from a 3D model (perhaps reconstructed from images) under point sources, and again PCA is used to estimate a subspace. Finally, images rendered from a 3D model under diffuse lighting based on spherical harmonics are directly used as basis images. In this paper, we show how to arrange physical lighting so that the acquired images of each object can be directly used as the basis vectors of a lowdimensional linear space, and that this subspace is close to those acquired by the other methods. More specifically, there exist configurations of k point light source directions, with k typically ranging from 5 to 9, such that by taking k images of an object under these single sources, the resulting subspace is an effective representation for recognition under a wide range of lighting conditions. Since the subspace is generated directly from real images, potentially complex and/or brittle intermediate steps such as 3D reconstruction can be completely avoided; nor is it necessary to acquire large numbers of training images or to physically construct complex diffuse (harmonic) light fields. We validate the use of subspaces constructed in this fashion within the context of face recognition.
On the relationship between radiance and irradiance: determining the illumination from images of a convex Lambertian object
, 2001
"... This paper presents a theoretical analysis of the relationship between incoming radiance and irradiance. Radiance and irradiance are basic optical quantities, and their relationship is of fundamental interest to many fields, including computer vision, radiative transfer, and computer graphics. Physi ..."
Abstract

Cited by 116 (10 self)
 Add to MetaCart
This paper presents a theoretical analysis of the relationship between incoming radiance and irradiance. Radiance and irradiance are basic optical quantities, and their relationship is of fundamental interest to many fields, including computer vision, radiative transfer, and computer graphics. Physically, we are interested in analyzing the properties of the light field generated when a homogeneous convex curved Lambertian surface of known geometry reflects a distant illumination field. A Lambertian surface reflects light proportional to the incoming irradiance, so analysis of this physical system is equivalent to a mathematical analysis of the relationship between incoming radiance and irradiance
Enhanced local texture feature sets for face recognition under difficult lighting conditions
 In Proc. AMFG’07
, 2007
"... Abstract. Recognition in uncontrolled situations is one of the most important bottlenecks for practical face recognition systems. We address this by combining the strengths of robust illumination normalization, local texture based face representations and distance transform based matching metrics. S ..."
Abstract

Cited by 98 (7 self)
 Add to MetaCart
Abstract. Recognition in uncontrolled situations is one of the most important bottlenecks for practical face recognition systems. We address this by combining the strengths of robust illumination normalization, local texture based face representations and distance transform based matching metrics. Specifically, we make three main contributions: (i) we present a simple and efficient preprocessing chain that eliminates most of the effects of changing illumination while still preserving the essential appearance details that are needed for recognition; (ii) we introduce Local Ternary Patterns (LTP), a generalization of the Local Binary Pattern (LBP) local texture descriptor that is more discriminant and less sensitive to noise in uniform regions; and (iii) we show that replacing local histogramming with a local distance transform based similarity metric further improves the performance of LBP/LTP based face recognition. The resulting method gives stateoftheart performance on three popular datasets chosen to test recognition under difficult
Photometric Stereo with General, Unknown Lighting
 In IEEE Conference on Computer Vision and Pattern Recognition
, 2001
"... Work on photometric stereo has shown how to recover the shape and reflectance properties of an object using multiple images taken with a fixed viewpoint and variable lighting conditions. This work has primarily relied on the presence of a single point source of light in each image. In this paper we ..."
Abstract

Cited by 93 (8 self)
 Add to MetaCart
Work on photometric stereo has shown how to recover the shape and reflectance properties of an object using multiple images taken with a fixed viewpoint and variable lighting conditions. This work has primarily relied on the presence of a single point source of light in each image. In this paper we show how to perform photometric stereo assuming that all lights in a scene are isotropic and distant from the object but otherwise unconstrained. Lighting in each image may be an unknown and arbitrary combination of diffuse, point and extended sources. Our work is based on recent results showing that for Lambertian objects, general lighting conditions can be represented using low order spherical harmonics. Using this representation we can recover shape by performing a simple optimization in a lowdimensional space. We also analyze the shape ambiguities that arise in such a representation. 1.
Frequency space environment map rendering
 ACM Transactions on Graphics (SIGGRAPH
, 2002
"... Figure 1: These images, showing many different lighting conditions and BRDFs, were each rendered at approximately 30 frames per second using our Spherical Harmonic Reflection Map (SHRM) representation. From left to right, a simplified microfacet BRDF, krylon blue (using McCool et al.’s reconstructio ..."
Abstract

Cited by 91 (8 self)
 Add to MetaCart
Figure 1: These images, showing many different lighting conditions and BRDFs, were each rendered at approximately 30 frames per second using our Spherical Harmonic Reflection Map (SHRM) representation. From left to right, a simplified microfacet BRDF, krylon blue (using McCool et al.’s reconstruction from measurements at Cornell), orange and velvet (CURET database), and an anisotropic BRDF (based on the KajiyaKay model). The environment maps are the Grace Cathedral, St. Peter’s Basilica, the Uffizi gallery, and a Eucalyptus grove, courtesy Paul Debevec. The armadillo model is from Venkat Krishnamurthy. We present a new method for realtime rendering of objects with complex isotropic BRDFs under distant natural illumination, as specified by an environment map. Our approach is based on spherical frequency space analysis and includes three main contributions. Firstly, we are able to theoretically analyze required sampling rates and resolutions, which have traditionally been determined in an adhoc manner. We also introduce a new compact representation, which we call a spherical harmonic reflection map (SHRM), for efficient representation and rendering. Finally, we show how to rapidly prefilter the environment map to compute the SHRM—our frequency domain prefiltering algorithm is generally orders of magnitude faster than previous angular (spatial) domain approaches.
Analytic PCA Construction for Theoretical Analysis of Lighting Variability in Images of a Lambertian Object
 IEEE Trans. Pattern Analysis and Machine Intelligence
, 2002
"... Lambertian object ..."