Results 11  20
of
254
Solving LargeScale Sparse Semidefinite Programs for Combinatorial Optimization
 SIAM JOURNAL ON OPTIMIZATION
, 1998
"... We present a dualscaling interiorpoint algorithm and show how it exploits the structure and sparsity of some large scale problems. We solve the positive semidefinite relaxation of combinatorial and quadratic optimization problems subject to boolean constraints. We report the first computational re ..."
Abstract

Cited by 119 (11 self)
 Add to MetaCart
(Show Context)
We present a dualscaling interiorpoint algorithm and show how it exploits the structure and sparsity of some large scale problems. We solve the positive semidefinite relaxation of combinatorial and quadratic optimization problems subject to boolean constraints. We report the first computational results of interiorpoint algorithms for approximating the maximum cut semidefinite programs with dimension upto 3000.
SDPA (SemiDefinite Programming Algorithm) User's Manual  Version 7.0.5
, 2008
"... The SDPA (SemiDefinite Programming Algorithm) [5] is a software package for solving semidefinite programs (SDPs). It is based on a Mehrotratype predictorcorrector infeasible primaldual interiorpoint method. The SDPA handles the standard form SDP and its dual. It is implemented in C++ language u ..."
Abstract

Cited by 110 (31 self)
 Add to MetaCart
The SDPA (SemiDefinite Programming Algorithm) [5] is a software package for solving semidefinite programs (SDPs). It is based on a Mehrotratype predictorcorrector infeasible primaldual interiorpoint method. The SDPA handles the standard form SDP and its dual. It is implemented in C++ language utilizing the LAPACK [1] for matrix computations. The SDPA version 7.0.5 enjoys the following features: • Efficient method for computing the search directions when the SDP to be solved is large scale and sparse [4]. • Block diagonal matrix structure and sparse matrix structure are supported for data matrices. • Sparse or dense Cholesky factorization for the Schur matrix is automatically selected. • An initial point can be specified. • Some information on infeasibility of the SDP is provided. This manual and the SDPA can be downloaded from the WWW site
Exploiting Sparsity in Semidefinite Programming via Matrix Completion I: General Framework
 SIAM JOURNAL ON OPTIMIZATION
, 1999
"... A critical disadvantage of primaldual interiorpoint methods against dual interiorpoint methods for large scale SDPs (semidefinite programs) has been that the primal positive semidefinite variable matrix becomes fully dense in general even when all data matrices are sparse. Based on some fundamenta ..."
Abstract

Cited by 104 (30 self)
 Add to MetaCart
(Show Context)
A critical disadvantage of primaldual interiorpoint methods against dual interiorpoint methods for large scale SDPs (semidefinite programs) has been that the primal positive semidefinite variable matrix becomes fully dense in general even when all data matrices are sparse. Based on some fundamental results about positive semidefinite matrix completion, this article proposes a general method of exploiting the aggregate sparsity pattern over all data matrices to overcome this disadvantage. Our method is used in two ways. One is a conversion of a sparse SDP having a large scale positive semidefinite variable matrix into an SDP having multiple but smaller size positive semidefinite variable matrices to which we can effectively apply any interiorpoint method for SDPs employing a standard blockdiagonal matrix data structure. The other way is an incorporation of our method into primaldual interiorpoint methods which we can apply directly to a given SDP. In Part II of this article, we wi...
Handbook of semidefinite programming
"... Semidefinite programming (or SDP) has been one of the most exciting and active research areas in optimization during the 1990s. It has attracted researchers with very diverse backgrounds, including experts in convex programming, linear algebra, numerical optimization, combinatorial optimization, con ..."
Abstract

Cited by 89 (3 self)
 Add to MetaCart
Semidefinite programming (or SDP) has been one of the most exciting and active research areas in optimization during the 1990s. It has attracted researchers with very diverse backgrounds, including experts in convex programming, linear algebra, numerical optimization, combinatorial optimization, control theory, and statistics. This tremendous research activity was spurred by the discovery of important applications in combinatorial optimization and control theory, the development of efficient interiorpoint algorithms for solving SDP problems, and the depth and elegance of the underlying optimization theory. This book includes nineteen chapters on the theory, algorithms, and applications of semidefinite programming. Written by the leading experts on the subject, it offers an advanced and broad overview of the current state of the field. The coverage is somewhat less comprehensive, and the overall level more advanced, than we had planned at the start of the project. In order to finish the book in a timely fashion, we have had to abandon hopes for separate chapters on some important topics (such as a discussion of SDP algorithms in the
Solving Euclidean Distance Matrix Completion Problems Via Semidefinite Programming
, 1997
"... Given a partial symmetric matrix A with only certain elements specified, the Euclidean distance matrix completion problem (IgDMCP) is to find the unspecified elements of A that make A a Euclidean distance matrix (IgDM). In this paper, we follow the successful approach in [20] and solve the IgDMCP by ..."
Abstract

Cited by 88 (15 self)
 Add to MetaCart
Given a partial symmetric matrix A with only certain elements specified, the Euclidean distance matrix completion problem (IgDMCP) is to find the unspecified elements of A that make A a Euclidean distance matrix (IgDM). In this paper, we follow the successful approach in [20] and solve the IgDMCP by generalizing the completion problem to allow for approximate completions. In particular, we introduce a primaldual interiorpoint algorithm that solves an equivalent (quadratic objective function) semidefinite programming problem (SDP). Numerical results are included which illustrate the efficiency and robustness of our approach. Our randomly generated problems consistently resulted in low dimensional solutions when no completion existed.
Semidefinite Programming Relaxations For The Quadratic Assignment Problem
, 1998
"... Semidefinite programming (SDP) relaxations for the quadratic assignment problem (QAP) are derived using the dual of the (homogenized) Lagrangian dual of appropriate equivalent representations of QAP. These relaxations result in the interesting, special, case where only the dual problem of the SDP re ..."
Abstract

Cited by 86 (23 self)
 Add to MetaCart
Semidefinite programming (SDP) relaxations for the quadratic assignment problem (QAP) are derived using the dual of the (homogenized) Lagrangian dual of appropriate equivalent representations of QAP. These relaxations result in the interesting, special, case where only the dual problem of the SDP relaxation has strict interior, i.e. the Slater constraint qualification always fails for the primal problem. Although there is no duality gap in theory, this indicates that the relaxation cannot be solved in a numerically stable way. By exploring the geometrical structure of the relaxation, we are able to find projected SDP relaxations. These new relaxations, and their duals, satisfy the Slater constraint qualification, and so can be solved numerically using primaldual interiorpoint methods. For one of our models, a preconditioned conjugate gradient method is used for solving the large linear systems which arise when finding the Newton direction. The preconditioner is found by exploiting th...
Exploiting Sparsity in PrimalDual InteriorPoint Methods for Semidefinite Programming
 Mathematical Programming
, 1997
"... Abstract. The HelmbergRendlVanderbeiWolkowicz/KojimaShindohHara/Monteiro and the NesterovTodd search directions have been used in many primaldual interiorpoint methods for semidefinite programs. This paper proposes an efficient method for computing the two directions when a semidefinite prog ..."
Abstract

Cited by 80 (19 self)
 Add to MetaCart
(Show Context)
Abstract. The HelmbergRendlVanderbeiWolkowicz/KojimaShindohHara/Monteiro and the NesterovTodd search directions have been used in many primaldual interiorpoint methods for semidefinite programs. This paper proposes an efficient method for computing the two directions when a semidefinite program to be solved is large scale and sparse.
A semidefinite framework for trust region subproblems with applications to large scale minimization
, 2002
"... ..."
(Show Context)
On Extending Some PrimalDual InteriorPoint Algorithms From Linear Programming to Semidefinite Programming
 SIAM Journal on Optimization
, 1998
"... This work concerns primaldual interiorpoint methods for semidefinite programming (SDP) that use a search direction originally proposed by HelmbergRendlVanderbeiWolkowicz [5] and KojimaShindohHara [11], and recently rediscovered by Monteiro [15] in a more explicit form. In analyzing these meth ..."
Abstract

Cited by 75 (2 self)
 Add to MetaCart
(Show Context)
This work concerns primaldual interiorpoint methods for semidefinite programming (SDP) that use a search direction originally proposed by HelmbergRendlVanderbeiWolkowicz [5] and KojimaShindohHara [11], and recently rediscovered by Monteiro [15] in a more explicit form. In analyzing these methods, a number of basic equalities and inequalities were developed in [11] and also in [15] through different means and in different forms. In this paper, we give a concise derivation of the key equalities and inequalities for complexity analysis along the exact line used in linear programming (LP), producing basic relationships that have compact forms almost identical to their counterparts in LP. We also introduce a new formulation of the central path and variablemetric measures of centrality. These results provide convenient tools for deriving polynomiality results for primaldual algorithms extended from LP to SDP using the aforementioned and related search directions. We present examples...
Polynomial Convergence of PrimalDual Algorithms for Semidefinite Programming Based on Monteiro and Zhang Family of Directions
 School of ISyE, Georgia Institute of Technology, Atlanta, GA 30332
, 1997
"... This paper establishes the polynomialconvergence of the class of primaldual feasible interiorpoint algorithms for semidefinite programming (SDP) based on Monteiro and Zhang family of search directions. In contrast to Monteiro and Zhang's work, no condition is imposed on the scaling matrix that ..."
Abstract

Cited by 72 (11 self)
 Add to MetaCart
This paper establishes the polynomialconvergence of the class of primaldual feasible interiorpoint algorithms for semidefinite programming (SDP) based on Monteiro and Zhang family of search directions. In contrast to Monteiro and Zhang's work, no condition is imposed on the scaling matrix that determines the search direction. We show that the polynomial iterationcomplexity bounds of two wellknown algorithms for linear programming, namely the shortstep pathfollowing algorithm of Kojima et al. and Monteiro and Adler, and the predictorcorrector algorithm of Mizuno et al., carry over to the context of SDP. Since Monteiro and Zhang family of directions includes the Alizadeh, Haeberly and Overton direction, we establish for the first time the polynomial convergence of algorithms based on this search direction. Keywords: Semidefinite programming, interiorpoint methods, polynomial complexity, pathfollowing methods, primaldual methods. AMS 1991 subject classification: 65K05, 90C25, 90C...