Results 1  10
of
70
Primaldual approximation algorithms for metric facility location and kmedian problems
 Journal of the ACM
, 1999
"... ..."
A constantfactor approximation algorithm for the kmedian problem
 In Proceedings of the 31st Annual ACM Symposium on Theory of Computing
, 1999
"... We present the first constantfactor approximation algorithm for the metric kmedian problem. The kmedian problem is one of the most wellstudied clustering problems, i.e., those problems in which the aim is to partition a given set of points into clusters so that the points within a cluster are re ..."
Abstract

Cited by 212 (13 self)
 Add to MetaCart
We present the first constantfactor approximation algorithm for the metric kmedian problem. The kmedian problem is one of the most wellstudied clustering problems, i.e., those problems in which the aim is to partition a given set of points into clusters so that the points within a cluster are relatively close with respect to some measure. For the metric kmedian problem, we are given n points in a metric space. We select k of these to be cluster centers, and then assign each point to its closest selected center. If point j is assigned to a center i, the cost incurred is proportional to the distance between i and j. The goal is to select the k centers that minimize the sum of the assignment costs. We give a 6 2 3approximation algorithm for this problem. This improves upon the best previously known result of O(log k log log k), which was obtained by refining and derandomizing a randomized O(log n log log n)approximation algorithm of Bartal. 1
Improved Combinatorial Algorithms for the Facility Location and kMedian Problems
 In Proceedings of the 40th Annual IEEE Symposium on Foundations of Computer Science
, 1999
"... We present improved combinatorial approximation algorithms for the uncapacitated facility location and kmedian problems. Two central ideas in most of our results are cost scaling and greedy improvement. We present a simple greedy local search algorithm which achieves an approximation ratio of 2:414 ..."
Abstract

Cited by 205 (13 self)
 Add to MetaCart
We present improved combinatorial approximation algorithms for the uncapacitated facility location and kmedian problems. Two central ideas in most of our results are cost scaling and greedy improvement. We present a simple greedy local search algorithm which achieves an approximation ratio of 2:414 + in ~ O(n 2 =) time. This also yields a bicriteria approximation tradeoff of (1 +; 1+ 2=) for facility cost versus service cost which is better than previously known tradeoffs and close to the best possible. Combining greedy improvement and cost scaling with a recent primal dual algorithm for facility location due to Jain and Vazirani, we get an approximation ratio of 1.853 in ~ O(n 3 ) time. This is already very close to the approximation guarantee of the best known algorithm which is LPbased. Further, combined with the best known LPbased algorithm for facility location, we get a very slight improvement in the approximation factor for facility location, achieving 1.728....
Analysis of a local search heuristic for facility location problems
 IN PROCEEDINGS OF THE 9TH ANNUAL ACMSIAM SYMPOSIUM ON DISCRETE ALGORITHMS
, 1998
"... In this paper, we study approximation algorithms for several NPhard facility location problems. We prove that a simple local search heuristic yields polynomialtime constantfactor approximation bounds for the metric versions of the uncapacitated kmedian problem and the uncapacitated facility loca ..."
Abstract

Cited by 146 (5 self)
 Add to MetaCart
In this paper, we study approximation algorithms for several NPhard facility location problems. We prove that a simple local search heuristic yields polynomialtime constantfactor approximation bounds for the metric versions of the uncapacitated kmedian problem and the uncapacitated facility location problem. (For the kmedian problem, our algorithms require a constantfactor blowup in the parameter k.) This local search heuristic was rst proposed several decades ago, and has been shown to exhibit good practical performance in empirical studies. We also extend the above results to obtain constantfactor approximation bounds for the metric versions of capacitated kmedian and facility location problems.
Improved approximation algorithms for uncapacitated facility location (Extended Abstract)
, 1998
"... ..."
A new greedy approach for facility location problems
"... We present a simple and natural greedy algorithm for the metric uncapacitated facility location problem achieving an approximation guarantee of 1.61 whereas the best previously known was 1.73. Furthermore, we will show that our algorithm has a property which allows us to apply the technique of Lagra ..."
Abstract

Cited by 115 (9 self)
 Add to MetaCart
We present a simple and natural greedy algorithm for the metric uncapacitated facility location problem achieving an approximation guarantee of 1.61 whereas the best previously known was 1.73. Furthermore, we will show that our algorithm has a property which allows us to apply the technique of Lagrangian relaxation. Using this property, we can nd better approximation algorithms for many variants of the facility location problem, such as the capacitated facility location problem with soft capacities and a common generalization of the kmedian and facility location problem. We will also prove a lower bound on the approximability of the kmedian problem.
Greedy Facility Location Algorithms analyzed using Dual Fitting with FactorRevealing LP
 Journal of the ACM
, 2001
"... We present a natural greedy algorithm for the metric uncapacitated facility location problem and use the method of dual fitting to analyze its approximation ratio, which turns out to be 1.861. The running time of our algorithm is O(m log m), where m is the total number of edges in the underlying c ..."
Abstract

Cited by 100 (13 self)
 Add to MetaCart
We present a natural greedy algorithm for the metric uncapacitated facility location problem and use the method of dual fitting to analyze its approximation ratio, which turns out to be 1.861. The running time of our algorithm is O(m log m), where m is the total number of edges in the underlying complete bipartite graph between cities and facilities. We use our algorithm to improve recent results for some variants of the problem, such as the fault tolerant and outlier versions. In addition, we introduce a new variant which can be seen as a special case of the concave cost version of this problem.
Nash Equilibria in Competitive Societies, with Applications to Facility Location, Traffic Routing and Auction
, 2002
"... We consider the following class of problems. The value of an outcome to a society is measured via a submodular utility function (submodularity has a natural economic interpretation: decreasing marginal utility). Decisions, however are controlled by noncooperative agents who seek to maximise their ..."
Abstract

Cited by 99 (4 self)
 Add to MetaCart
We consider the following class of problems. The value of an outcome to a society is measured via a submodular utility function (submodularity has a natural economic interpretation: decreasing marginal utility). Decisions, however are controlled by noncooperative agents who seek to maximise their own private utility. We present, under some basic assumptions, guarantees on the social performance of Nash equilibria. For submodular utility functions, any Nash equilibrium gives an expected social utility within a factor 2 of optimal, subject to a functiondependent additive term. For nondecreasing, submodular utility functions, any Nash equilibrium gives an expected social utility within a factor 1 + of optimal, where 0 1 is a number based upon the discrete curvature of the function. A condition under which all sets of social and private utility functions induce pure strategy Nash equilibria is presented. The case in which agents, themselves, make use of approximation algorithms in decision making is discussed and performance guarantees given. Finally we present some speci c problems that fall into our framework. These include the competitive versions of the facility location problem and kmedian problem, a maximisation version of the trac routing problem of Roughgarden and Tardos [16], and multipleitem auctions.
Maximizing nonmonotone submodular functions
 In Proceedings of 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS
, 2007
"... Submodular maximization generalizes many important problems including Max Cut in directed/undirected graphs and hypergraphs, certain constraint satisfaction problems and maximum facility location problems. Unlike the problem of minimizing submodular functions, the problem of maximizing submodular fu ..."
Abstract

Cited by 83 (12 self)
 Add to MetaCart
Submodular maximization generalizes many important problems including Max Cut in directed/undirected graphs and hypergraphs, certain constraint satisfaction problems and maximum facility location problems. Unlike the problem of minimizing submodular functions, the problem of maximizing submodular functions is NPhard. In this paper, we design the first constantfactor approximation algorithms for maximizing nonnegative submodular functions. In particular, we give a deterministic local search 1 2approximation and a randomizedapproximation algo