Results 1 
5 of
5
A Probabilistic Calculus of Actions
, 1994
"... We present a symbolic machinery that admits both probabilistic and causal information about a given domain, and produces probabilistic statements about the effect of actions and the impact of observations. The calculus admits two types of conditioning operators: ordinary Bayes conditioning, P (yj ..."
Abstract

Cited by 38 (14 self)
 Add to MetaCart
We present a symbolic machinery that admits both probabilistic and causal information about a given domain, and produces probabilistic statements about the effect of actions and the impact of observations. The calculus admits two types of conditioning operators: ordinary Bayes conditioning, P (yjX = x), which represents the observation X = x, and causal conditioning, P (yjdo(X = x)), read: the probability of Y = y conditioned on holding X constant (at x) by deliberate action. Given a mixture of such observational and causal sentences, together with the topology of the causal graph, the calculus derives new conditional probabilities of both types, thus enabling one to quantify the effects of actions and observations. 1 Introduction Probabilistic methods, especially those based on graphical models have proven useful in tasks of predictions, abduction and belief revision [Pearl 1988, Heckerman 1990, Goldszmidt 1992, Darwiche 1993]. Their use in planning, however, remains less po...
Learning Causal Networks from Data: A survey and a new algorithm for recovering possibilistic causal networks
, 1997
"... Introduction Reasoning in terms of cause and effect is a strategy that arises in many tasks. For example, diagnosis is usually defined as the task of finding the causes (illnesses) from the observed effects (symptoms). Similarly, prediction can be understood as the description of a future plausible ..."
Abstract

Cited by 20 (5 self)
 Add to MetaCart
Introduction Reasoning in terms of cause and effect is a strategy that arises in many tasks. For example, diagnosis is usually defined as the task of finding the causes (illnesses) from the observed effects (symptoms). Similarly, prediction can be understood as the description of a future plausible situation where observed effects will be in accordance with the known causal structure of the phenomenon being studied. Causal models are a summary of the knowledge about a phenomenon expressed in terms of causation. Many areas of the ap # This work has been partially supported by the Spanish Comission Interministerial de Ciencia y Tecnologia Project CICYTTIC96 0878. plied sciences (econometry, biomedics, engineering, etc.) have used such a term to refer to models that yield explanations, allow for prediction and facilitate planning and decision making. Causal reasoning can be viewed as inference guided by a causation theory. That kind of inference can be further specialised into induc
Possibilistic Conditional Independence: A similaritybased measure and its application to causal network learning
, 1998
"... ..."
A Causal Calculus
"... Given an arbitrary causal graph, some of whose nodes are observable and some unobservable, the problem is to determine whether the causal effect of one variable on another can be computed from the joint distribution over the observables and, if the answer is positive, to derive a formula for the ..."
Abstract
 Add to MetaCart
Given an arbitrary causal graph, some of whose nodes are observable and some unobservable, the problem is to determine whether the causal effect of one variable on another can be computed from the joint distribution over the observables and, if the answer is positive, to derive a formula for the causal effect. We introduce a calculus which, using a step by step reduction of probabilistic expressions, derives the desired formulas. 1 1 Introduction Networks employing directed acyclic graphs (DAGs) can be used to provide either 1. an economical scheme for representing conditional independence assumptions and joint distribution functions, or 2. a graphical language for representing causal influences. Although the professed motivation for investigating such models lies primarily in the second category, [Wright, 1921, Blalock, 1971, Simon, 1954, Pearl 1988], causal inferences have been treated very cautiously in the statistical literature [Lauritzen & Spiegelhalter 1988, Cox 1992,...
Possibilistic Conditional Independence: a similaritybased measure and its application to causal network learning
, 1994
"... A definition for similarity between possibility distributions is introduced and discussed as a basis for detecting dependence between variables by measuring the similarity degree of their respective distributions. This definition is used to detect conditional independence relations in possibility di ..."
Abstract
 Add to MetaCart
A definition for similarity between possibility distributions is introduced and discussed as a basis for detecting dependence between variables by measuring the similarity degree of their respective distributions. This definition is used to detect conditional independence relations in possibility distributions derived from data. This is the basis for a new hybrid algorithm for recovering possibilistic causal networks. The algorithm POSSCAUSE is presented and its applications discussed and compared with analogous developments in possibilistic and probabilistic causal networks learning.