Results 1 
4 of
4
Extremal results in sparse pseudorandom graphs
 ADV. MATH. 256 (2014), 206–290
, 2014
"... Szemerédi’s regularity lemma is a fundamental tool in extremal combinatorics. However, the original version is only helpful in studying dense graphs. In the 1990s, Kohayakawa and Rödl proved an analogue of Szemerédi’s regularity lemma for sparse graphs as part of a general program toward extendin ..."
Abstract

Cited by 13 (8 self)
 Add to MetaCart
Szemerédi’s regularity lemma is a fundamental tool in extremal combinatorics. However, the original version is only helpful in studying dense graphs. In the 1990s, Kohayakawa and Rödl proved an analogue of Szemerédi’s regularity lemma for sparse graphs as part of a general program toward extending extremal results to sparse graphs. Many of the key applications of Szemerédi’s regularity lemma use an associated counting lemma. In order to prove extensions of these results which also apply to sparse graphs, it remained a wellknown open problem to prove a counting lemma in sparse graphs. The main advance of this paper lies in a new counting lemma, proved following the functional approach of Gowers, which complements the sparse regularity lemma of Kohayakawa and Rödl, allowing us to count small graphs in regular subgraphs of a sufficiently pseudorandom graph. We use this to prove sparse extensions of several wellknown combinatorial theorems, including the removal lemmas for graphs and groups, the ErdősStoneSimonovits theorem and Ramsey’s
Graph removal lemmas
 SURVEYS IN COMBINATORICS
, 2013
"... The graph removal lemma states that any graph on n vertices with o(nv(H)) copies of a fixed graph H may be made Hfree by removing o(n²) edges. Despite its innocent appearance, this lemma and its extensions have several important consequences in number theory, discrete geometry, graph theory and com ..."
Abstract

Cited by 9 (3 self)
 Add to MetaCart
(Show Context)
The graph removal lemma states that any graph on n vertices with o(nv(H)) copies of a fixed graph H may be made Hfree by removing o(n²) edges. Despite its innocent appearance, this lemma and its extensions have several important consequences in number theory, discrete geometry, graph theory and computer science. In this survey we discuss these lemmas, focusing in particular on recent improvements to their quantitative aspects.