Results 1  10
of
12
SOME GEOMETRIC PERSPECTIVES IN CONCURRENCY THEORY
 HOMOLOGY, HOMOTOPY AND APPLICATIONS, VOL.5(2), 2003, PP.95–136
, 2003
"... Concurrency, i.e., the domain in computer science which deals with parallel (asynchronous) computations, has very strong links with algebraic topology; this is what we are developing in this paper, giving a survey of “geometric” models for concurrency. We show that the properties we want to prove on ..."
Abstract

Cited by 43 (3 self)
 Add to MetaCart
Concurrency, i.e., the domain in computer science which deals with parallel (asynchronous) computations, has very strong links with algebraic topology; this is what we are developing in this paper, giving a survey of “geometric” models for concurrency. We show that the properties we want to prove on concurrent systems are stable under some form of deformation, which is almost homotopy. In fact, as the “direction ” of time matters, we have to allow deformation only as long as we do not reverse the direction of time. This calls for a new homotopy theory: “directed ” or dihomotopy. We develop some of the geometric intuition behind this theory and give some hints about the algebraic objects one can associate with it (in particular homology groups). For some historic as well as for some deeper reasons, the theory is at a stage where there is a nice blend between cubical, ωcategorical and topological techniques.
TOPOLOGICAL DEFORMATION OF HIGHER DIMENSIONAL AUTOMATA
 HOMOLOGY, HOMOTOPY AND APPLICATIONS, VOL.5(2), 2003, PP.39–82
, 2003
"... A local pospace is a gluing of topological spaces which are equipped with a closed partial ordering representing the time flow. They are used as a formalization of higher dimensional automata (see for instance [6]) which model concurrent systems in computer science. It is known [11] that there are ..."
Abstract

Cited by 41 (18 self)
 Add to MetaCart
A local pospace is a gluing of topological spaces which are equipped with a closed partial ordering representing the time flow. They are used as a formalization of higher dimensional automata (see for instance [6]) which model concurrent systems in computer science. It is known [11] that there are two distinct notions of deformation of higher dimensional automata, “spatial” and “temporal”, leaving invariant computer scientific properties like presence or absence of deadlocks. Unfortunately, the formalization of these notions is still unknown in the general case of local pospaces. We introduce here a particular kind of local pospace, the “globular CWcomplexes”, for which we formalize these notions of deformations and which are sufficient to formalize
Directed combinatorial homology and noncommutative tori (The breaking of symmetries in algebraic topology)
"... This is a brief study of the homology of cubical sets, with two main purposes. First, this combinatorial structure is viewed as representing directed spaces, breaking the intrinsic symmetries of topological spaces. Cubical sets have a directed homology, consisting of preordered abelian groups where ..."
Abstract

Cited by 12 (7 self)
 Add to MetaCart
This is a brief study of the homology of cubical sets, with two main purposes. First, this combinatorial structure is viewed as representing directed spaces, breaking the intrinsic symmetries of topological spaces. Cubical sets have a directed homology, consisting of preordered abelian groups where the positive cone comes from the structural cubes. But cubical sets can also express topological facts missed by ordinary topology. This happens, for instance, in the study of group actions or foliations, where a topologicallytrivial quotient (the orbit set or the set of leaves) can be enriched with a natural cubical structure whose directed cohomology agrees with Connes ' analysis in noncommutative geometry. Thus, cubical sets can provide a sort of 'noncommutative topology', without the metric information of C*algebras.
The shape of a category up to directed homotopy
 Theory Appl. Categ
, 2004
"... This work is a contribution to a recent field, Directed Algebraic Topology. Categories which appear as fundamental categories of ‘directed structures’, e.g. ordered topological spaces, have to be studied up to appropriate notions of directed homotopy equivalence, which are more general than ordinary ..."
Abstract

Cited by 11 (4 self)
 Add to MetaCart
This work is a contribution to a recent field, Directed Algebraic Topology. Categories which appear as fundamental categories of ‘directed structures’, e.g. ordered topological spaces, have to be studied up to appropriate notions of directed homotopy equivalence, which are more general than ordinary equivalence of categories. Here we introduce past and future equivalences of categories—sort of symmetric versions of an adjunction—and use them and their combinations to get ‘directed models ’ of a category; in the simplest case, these are the join of the least full reflective and the least full coreflective subcategory.
Inequilogical spaces, directed homology and noncommutative geometry
 Homology Homotopy Appl
"... Abstract. We introduce a preordered version of D. Scott's equilogical spaces [Sc], called inequilogical spaces, as a possible setting for Directed Algebraic Topology. The new structure can also express 'formal quotients ' of spaces, which are not topological spaces and are of interest in noncommutat ..."
Abstract

Cited by 7 (5 self)
 Add to MetaCart
Abstract. We introduce a preordered version of D. Scott's equilogical spaces [Sc], called inequilogical spaces, as a possible setting for Directed Algebraic Topology. The new structure can also express 'formal quotients ' of spaces, which are not topological spaces and are of interest in noncommutative geometry, with finer results than the ones obtained with equilogical spaces, in a previous paper. This setting is compared with other structures which have been recently used for Directed Algebraic Topology: spaces equipped with an order, or a local order, or distinguished paths or distinguished cubes.
Higher cospans and weak cubical categories (Cospans in Algebraic Topology
 I), Theory Appl. Categ
"... form a cubical set with compositions x +i y in all directions, which are computed using pushouts and behave ‘categorically ’ in a weak sense, up to suitable comparisons. Actually, we work with a ‘symmetric cubical structure’, which includes the transposition symmetries, because this allows for a str ..."
Abstract

Cited by 5 (2 self)
 Add to MetaCart
form a cubical set with compositions x +i y in all directions, which are computed using pushouts and behave ‘categorically ’ in a weak sense, up to suitable comparisons. Actually, we work with a ‘symmetric cubical structure’, which includes the transposition symmetries, because this allows for a strong simplification of the coherence conditions. These notions will be used in subsequent papers to study topological cospans and their use in Algebraic Topology, from tangles to cobordisms of manifolds. We also introduce the more general notion of a multiple category, where to start witharrows belong to different sorts, varying in a countable family, and symmetries must be dropped. The present examples seem to show that the symmetric cubical case is better suited for topological applications.
CATEGORIES OF COMPONENTS AND LOOPFREE CATEGORIES
"... Abstract. Given a groupoid G one has, in addition to the equivalence of categories E from G to its skeleton, a fibration F (Definition 1.11) from G to its set of connected components (seen as a discrete category). From the observation that E and F differ unless G[x, x] = {idx} for every object x of ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
Abstract. Given a groupoid G one has, in addition to the equivalence of categories E from G to its skeleton, a fibration F (Definition 1.11) from G to its set of connected components (seen as a discrete category). From the observation that E and F differ unless G[x, x] = {idx} for every object x of G, we prove there is a fibered equivalence (Definition 1.12) from C[Σ1] (Proposition 1.1) to C/Σ (Proposition 1.8) when Σ is a
QUOTIENT MODELS OF A CATEGORY UP TO DIRECTED HOMOTOPY Abstract.
"... Directed Algebraic Topology is a recent field, deeply linked with ordinary and higher dimensional Category Theory. A ‘directed space’, e.g. an ordered topological space, has directed homotopies (which are generally non reversible) and a fundamental category (replacing the fundamental groupoid of the ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
Directed Algebraic Topology is a recent field, deeply linked with ordinary and higher dimensional Category Theory. A ‘directed space’, e.g. an ordered topological space, has directed homotopies (which are generally non reversible) and a fundamental category (replacing the fundamental groupoid of the classical case). Finding a simple possibly finite model of the latter is a nontrivial problem, whose solution gives relevant information on the given ‘space’; a problem which is of interest for applications as well as in general Category Theory. Here we continue the work “The shape of a category up to directed homotopy”, with a deeper analysis of ‘surjective models’, motivated by studying the singularities of 3dimensional ordered spaces.
Geometry and Topology in Concurrency Theory
, 909
"... is permitted for educational or research use on condition that this copyright notice is included in any copy. See back inner page for a list of recent BRICS Notes Series publications. Copies may be obtained by contacting: BRICS ..."
Abstract
 Add to MetaCart
is permitted for educational or research use on condition that this copyright notice is included in any copy. See back inner page for a list of recent BRICS Notes Series publications. Copies may be obtained by contacting: BRICS