Results 1  10
of
26
SOME GEOMETRIC PERSPECTIVES IN CONCURRENCY THEORY
 HOMOLOGY, HOMOTOPY AND APPLICATIONS, VOL.5(2), 2003, PP.95–136
, 2003
"... Concurrency, i.e., the domain in computer science which deals with parallel (asynchronous) computations, has very strong links with algebraic topology; this is what we are developing in this paper, giving a survey of “geometric” models for concurrency. We show that the properties we want to prove on ..."
Abstract

Cited by 43 (3 self)
 Add to MetaCart
Concurrency, i.e., the domain in computer science which deals with parallel (asynchronous) computations, has very strong links with algebraic topology; this is what we are developing in this paper, giving a survey of “geometric” models for concurrency. We show that the properties we want to prove on concurrent systems are stable under some form of deformation, which is almost homotopy. In fact, as the “direction ” of time matters, we have to allow deformation only as long as we do not reverse the direction of time. This calls for a new homotopy theory: “directed ” or dihomotopy. We develop some of the geometric intuition behind this theory and give some hints about the algebraic objects one can associate with it (in particular homology groups). For some historic as well as for some deeper reasons, the theory is at a stage where there is a nice blend between cubical, ωcategorical and topological techniques.
A model category for the homotopy theory of concurrency
 Homology, Homotopy and Applications
"... Abstract. We construct a cofibrantly generated model structure on the category of flows such that any flow is fibrant and such that two cofibrant flows are homotopy equivalent for this model structure if and only if they are Shomotopy equivalent. This result provides an interpretation of the notion ..."
Abstract

Cited by 38 (13 self)
 Add to MetaCart
Abstract. We construct a cofibrantly generated model structure on the category of flows such that any flow is fibrant and such that two cofibrant flows are homotopy equivalent for this model structure if and only if they are Shomotopy equivalent. This result provides an interpretation of the notion of Shomotopy equivalence in the framework of model
Directed combinatorial homology and noncommutative tori (The breaking of symmetries in algebraic topology)
"... This is a brief study of the homology of cubical sets, with two main purposes. First, this combinatorial structure is viewed as representing directed spaces, breaking the intrinsic symmetries of topological spaces. Cubical sets have a directed homology, consisting of preordered abelian groups where ..."
Abstract

Cited by 12 (7 self)
 Add to MetaCart
This is a brief study of the homology of cubical sets, with two main purposes. First, this combinatorial structure is viewed as representing directed spaces, breaking the intrinsic symmetries of topological spaces. Cubical sets have a directed homology, consisting of preordered abelian groups where the positive cone comes from the structural cubes. But cubical sets can also express topological facts missed by ordinary topology. This happens, for instance, in the study of group actions or foliations, where a topologicallytrivial quotient (the orbit set or the set of leaves) can be enriched with a natural cubical structure whose directed cohomology agrees with Connes ' analysis in noncommutative geometry. Thus, cubical sets can provide a sort of 'noncommutative topology', without the metric information of C*algebras.
On the Expressiveness of higher dimensional automata
 EXPRESS 2004, ENTCS
, 2005
"... Abstract In this paper I compare the expressive power of several models of concurrency based on their ability to represent causal dependence. To this end, I translate these models, in behaviour preserving ways, into the model of higher dimensional automata, which is the most expressive model under i ..."
Abstract

Cited by 11 (0 self)
 Add to MetaCart
Abstract In this paper I compare the expressive power of several models of concurrency based on their ability to represent causal dependence. To this end, I translate these models, in behaviour preserving ways, into the model of higher dimensional automata, which is the most expressive model under investigation. In particular, I propose four different translations of Petri nets, corresponding to the four different computational interpretations of nets found in the literature. I also extend various equivalence relations for concurrent systems to higher dimensional automata. These include the history preserving bisimulation, which is the coarsest equivalence that fully respects branching time, causality and their interplay, as well as the STbisimulation, a branching time respecting equivalence that takes causality into account to the extent that it is expressible by actions overlapping in time. Through their embeddings in higher dimensional automata, it is now welldefined whether members of different models of concurrency are equivalent.
The shape of a category up to directed homotopy
 Theory Appl. Categ
, 2004
"... This work is a contribution to a recent field, Directed Algebraic Topology. Categories which appear as fundamental categories of ‘directed structures’, e.g. ordered topological spaces, have to be studied up to appropriate notions of directed homotopy equivalence, which are more general than ordinary ..."
Abstract

Cited by 11 (4 self)
 Add to MetaCart
This work is a contribution to a recent field, Directed Algebraic Topology. Categories which appear as fundamental categories of ‘directed structures’, e.g. ordered topological spaces, have to be studied up to appropriate notions of directed homotopy equivalence, which are more general than ordinary equivalence of categories. Here we introduce past and future equivalences of categories—sort of symmetric versions of an adjunction—and use them and their combinations to get ‘directed models ’ of a category; in the simplest case, these are the join of the least full reflective and the least full coreflective subcategory.
Investigating The Algebraic Structure of Dihomotopy Types
, 2001
"... This presentation is the sequel of a paper published in GETCO'00 proceedings where a research program to construct an appropriate algebraic setting for the study of deformations of higher dimensional automata was sketched. This paper focuses precisely on detailing some of its aspects. The main idea ..."
Abstract

Cited by 8 (1 self)
 Add to MetaCart
This presentation is the sequel of a paper published in GETCO'00 proceedings where a research program to construct an appropriate algebraic setting for the study of deformations of higher dimensional automata was sketched. This paper focuses precisely on detailing some of its aspects. The main idea is that the category of homotopy types can be embedded in a new category of dihomotopy types, the embedding being realized by the Globe functor. In this latter category, isomorphism classes of objects are exactly higher dimensional automata up to deformations leaving invariant their computer scientific properties as presence or not of deadlocks (or everything similar or related). Some hints to study the algebraic structure of dihomotopy types are given, in particular a rule to decide whether a statement/notion concerning dihomotopy types is or not the lifting of another statement/notion concerning homotopy types. This rule does not enable to guess what is the lifting of a given notion/statement, it only enables to make the verification, once the lifting has been found.
Inequilogical spaces, directed homology and noncommutative geometry
 Homology Homotopy Appl
"... Abstract. We introduce a preordered version of D. Scott's equilogical spaces [Sc], called inequilogical spaces, as a possible setting for Directed Algebraic Topology. The new structure can also express 'formal quotients ' of spaces, which are not topological spaces and are of interest in noncommutat ..."
Abstract

Cited by 7 (5 self)
 Add to MetaCart
Abstract. We introduce a preordered version of D. Scott's equilogical spaces [Sc], called inequilogical spaces, as a possible setting for Directed Algebraic Topology. The new structure can also express 'formal quotients ' of spaces, which are not topological spaces and are of interest in noncommutative geometry, with finer results than the ones obtained with equilogical spaces, in a previous paper. This setting is compared with other structures which have been recently used for Directed Algebraic Topology: spaces equipped with an order, or a local order, or distinguished paths or distinguished cubes.
Concurrent process up to homotopy (I
 C. R. Acad. Sci. Paris Ser. I Math
, 2003
"... Abstract. Les CWcomplexes globulaires et les flots sont deux modélisations géométriques des automates parallèles qui permettent de formaliser la notion de dihomotopie. La dihomotopie est une relation d’équivalence sur les automates parallèles qui préserve des propriétés informatiques comme la prése ..."
Abstract

Cited by 7 (4 self)
 Add to MetaCart
Abstract. Les CWcomplexes globulaires et les flots sont deux modélisations géométriques des automates parallèles qui permettent de formaliser la notion de dihomotopie. La dihomotopie est une relation d’équivalence sur les automates parallèles qui préserve des propriétés informatiques comme la présence ou non de deadlock. On construit un plongement des CWcomplexes globulaires dans les flots et on démontre que deux CWcomplexes globulaires sont dihomotopes si et seulement si les flots associés sont dihomotopes. Globular CWcomplexes and flows are both geometric models of concurrent processes which allow to model in a precise way the notion of dihomotopy. Dihomotopy is an equivalence relation which preserves computerscientific properties like the presence or not of deadlock. One constructs an embedding from globular CWcomplexes to flows and one proves that two globular CWcomplexes are dihomotopic if and only if the corresponding flows are dihomotopic. 1. Rappels sur les CWcomplexes globulaires Cette note est la première de deux notes présentant quelques résultats de [3].