Results 1  10
of
30
Equilogical Spaces
, 1998
"... It is well known that one can build models of full higherorder dependent type theory (also called the calculus of constructions) using partial equivalence relations (PERs) and assemblies over a partial combinatory algebra (PCA). But the idea of categories of PERs and ERs (total equivalence relation ..."
Abstract

Cited by 33 (12 self)
 Add to MetaCart
It is well known that one can build models of full higherorder dependent type theory (also called the calculus of constructions) using partial equivalence relations (PERs) and assemblies over a partial combinatory algebra (PCA). But the idea of categories of PERs and ERs (total equivalence relations) can be applied to other structures as well. In particular, we can easily dene the category of ERs and equivalencepreserving continuous mappings over the standard category Top 0 of topological T 0 spaces; we call these spaces (a topological space together with an ER) equilogical spaces and the resulting category Equ. We show that this categoryin contradistinction to Top 0 is a cartesian closed category. The direct proof outlined here uses the equivalence of the category Equ to the category PEqu of PERs over algebraic lattices (a full subcategory of Top 0 that is well known to be cartesian closed from domain theory). In another paper with Carboni and Rosolini (cited herein) a more abstract categorical generalization shows why many such categories are cartesian closed. The category Equ obviously contains Top 0 as a full subcategory, and it naturally contains many other well known subcategories. In particular, we show why, as a consequence of work of Ershov, Berger, and others, the KleeneKreisel hierarchy of countable functionals of nite types can be naturally constructed in Equ from the natural numbers object N by repeated use in Equ of exponentiation and binary products. We also develop for Equ notions of modest sets (a category equivalent to Equ) and assemblies to explain why a model of dependent type theory is obtained. We make some comparisons of this model to other, known models. 1
Domain Representations of Topological Spaces
, 2000
"... A domain representation of a topological space X is a function, usually a quotient map, from a subset of a domain onto X . Several different classes of domain representations are introduced and studied. It is investigated when it is possible to build domain representations from existing ones. It is, ..."
Abstract

Cited by 27 (9 self)
 Add to MetaCart
A domain representation of a topological space X is a function, usually a quotient map, from a subset of a domain onto X . Several different classes of domain representations are introduced and studied. It is investigated when it is possible to build domain representations from existing ones. It is, for example, discussed whether there exists a natural way to build a domain representation of a product of topological spaces from given domain representations of the factors. It is shown that any T 0 topological space has a domain representation. These domain representations are very large. However, smaller domain representations are also constructed for large classes of spaces. For example, each second countable regular Hausdorff space has a domain representation with a countable base. Domain representations of functions and function spaces are also studied.
Topological and Limitspace subcategories of Countablybased Equilogical Spaces
, 2001
"... this paper we show that the two approaches are equivalent for a ..."
Abstract

Cited by 25 (4 self)
 Add to MetaCart
this paper we show that the two approaches are equivalent for a
Exact Completions and Toposes
 University of Edinburgh
, 2000
"... Toposes and quasitoposes have been shown to be useful in mathematics, logic and computer science. Because of this, it is important to understand the di#erent ways in which they can be constructed. Realizability toposes and presheaf toposes are two important classes of toposes. All of the former and ..."
Abstract

Cited by 14 (4 self)
 Add to MetaCart
(Show Context)
Toposes and quasitoposes have been shown to be useful in mathematics, logic and computer science. Because of this, it is important to understand the di#erent ways in which they can be constructed. Realizability toposes and presheaf toposes are two important classes of toposes. All of the former and many of the latter arise by adding &quot;good &quot; quotients of equivalence relations to a simple category with finite limits. This construction is called the exact completion of the original category. Exact completions are not always toposes and it was not known, not even in the realizability and presheaf cases, when or why toposes arise in this way. Exact completions can be obtained as the composition of two related constructions. The first one assigns to a category with finite limits, the &quot;best &quot; regular category (called its regular completion) that embeds it. The second assigns to
A minimalist twolevel foundation for constructive mathematics
, 2008
"... We present a twolevel theory to formalize constructive mathematics as advocated in a previous paper with G. Sambin [MS05]. One level is given by an intensional type theory, called Minimal type theory. This theory extends the settheoretic version introduced in [MS05] with collections. The other lev ..."
Abstract

Cited by 12 (7 self)
 Add to MetaCart
We present a twolevel theory to formalize constructive mathematics as advocated in a previous paper with G. Sambin [MS05]. One level is given by an intensional type theory, called Minimal type theory. This theory extends the settheoretic version introduced in [MS05] with collections. The other level is given by an extensional set theory that is interpreted in the first one by means of a quotient model. This twolevel theory has two main features: it is minimal among the most relevant foundations for constructive mathematics; it is constructive thanks to the way the extensional level is linked to the intensional one which fulfills the “proofsasprograms” paradigm and acts as a programming language.
Domain Representations of Partial Functions, with Applications to Spatial Objects and Constructive Volume Geometry
, 2000
"... A partial spatial object is a partial map from space to data. Data types of partial spatial objects are modelled by topological algebras of partial maps and are the foundation for a high level approach to volume graphics called constructive volume geometry (CVG), where space and data are subspaces o ..."
Abstract

Cited by 11 (4 self)
 Add to MetaCart
A partial spatial object is a partial map from space to data. Data types of partial spatial objects are modelled by topological algebras of partial maps and are the foundation for a high level approach to volume graphics called constructive volume geometry (CVG), where space and data are subspaces of # dimensional Euclidean space. We investigate the computability of partial spatial object data types, in general and in volume graphics, using the theory of effective domain representations for topological algebras. The basic mathematical problem considered is to classify which partial functions between topological spaces can be represented by total continuous functions between given domain representations of the spaces. We prove theorems about partial functions on regular Hausdorff spaces and their domain representations, and apply the results to partial spatial objects and CVG algebras.
Constructive set theories and their categorytheoretic models
 IN: FROM SETS AND TYPES TO TOPOLOGY AND ANALYSIS
, 2005
"... We advocate a pragmatic approach to constructive set theory, using axioms based solely on settheoretic principles that are directly relevant to (constructive) mathematical practice. Following this approach, we present theories ranging in power from weaker predicative theories to stronger impredicat ..."
Abstract

Cited by 10 (0 self)
 Add to MetaCart
We advocate a pragmatic approach to constructive set theory, using axioms based solely on settheoretic principles that are directly relevant to (constructive) mathematical practice. Following this approach, we present theories ranging in power from weaker predicative theories to stronger impredicative ones. The theories we consider all have sound and complete classes of categorytheoretic models, obtained by axiomatizing the structure of an ambient category of classes together with its subcategory of sets. In certain special cases, the categories of sets have independent characterizations in familiar categorytheoretic terms, and one thereby obtains a rich source of naturally occurring mathematical models for (both predicative and impredicative) constructive set theories.
Reducibility of Domain Representations and CantorWeihrauch Domain Representations
, 2006
"... We introduce a notion of reducibility of representations of topological spaces and study some basic properties of this notion for domain representations. A representation reduces to another if its representing map factors through the other representation. Reductions form a preorder on representatio ..."
Abstract

Cited by 8 (4 self)
 Add to MetaCart
(Show Context)
We introduce a notion of reducibility of representations of topological spaces and study some basic properties of this notion for domain representations. A representation reduces to another if its representing map factors through the other representation. Reductions form a preorder on representations. A spectrum is a class of representations divided by the equivalence relation induced by reductions. We establish some basic properties of spectra, such as, nontriviality. Equivalent representations represent the same set of functions on the represented space. Within a class of representations, a representation is universal if all representations in the class reduce to it. We show that notions of admissibility, considered both for domains and within Weihrauch’s TTE, are universality concepts in the appropriate spectra. Viewing TTE representations as domain representations, the reduction notion here is a natural generalisation of the one from TTE. To illustrate the framework, we consider some domain representations of real numbers and show that the usual interval domain representation, which is universal among dense representations, does not reduce to various Cantor domain representations. On the other hand, however, we show that a substructure of the interval domain more suitable for efficient computation of operations is equivalent to the usual interval domain with respect to reducibility. 1.
Inductive Types and Exact Completion
 Ann. Pure Appl. Logic
, 2002
"... Using the theory of exact completions, we show that a specific class of pretopoi, consisting of what we might call "realizability pretopoi", can act as categorical models of certain predicative type theories, including MartinLof type theory. Our main theoretical instrument for doing so is ..."
Abstract

Cited by 8 (7 self)
 Add to MetaCart
(Show Context)
Using the theory of exact completions, we show that a specific class of pretopoi, consisting of what we might call "realizability pretopoi", can act as categorical models of certain predicative type theories, including MartinLof type theory. Our main theoretical instrument for doing so is a categorical notion, the notion of weak Wtypes, an "intensional" analogue of the "extensional " notion of Wtypes introduced in an article by Moerdijk and Palmgren ([6]). 1