Results 1 
3 of
3
Optimal Normalization in Orthogonal Term Rewriting Systems
 In: Proc. of the 5 th International Conference on Rewriting Techniques and Applications, RTA'93
, 1993
"... . We design a normalizing strategy for orthogonal term rewriting systems (OTRSs), which is a generalization of the callbyneed strategy of HuetL'evy [4]. The redexes contracted in our strategy are essential in the sense that they have "descendants" under any reduction of a given term. There is an ..."
Abstract

Cited by 24 (20 self)
 Add to MetaCart
. We design a normalizing strategy for orthogonal term rewriting systems (OTRSs), which is a generalization of the callbyneed strategy of HuetL'evy [4]. The redexes contracted in our strategy are essential in the sense that they have "descendants" under any reduction of a given term. There is an essential redex in any term not in normal form. We further show that contraction of the innermost essential redexes gives an optimal reduction to normal form, if it exists. We classify OTRSs depending on possible kinds of redex creation as noncreating, persistent, insidecreating, nonleftabsorbing, etc. All these classes are decidable. TRSs in these classes are sequential, but they do not need to be strongly sequential. For noncreating and persistent OTRSs, we show that our optimal strategy is efficient as well. 1 Introduction In this paper, we study correct and optimal computations in Orthogonal Term Rewriting Systems (OTRSs). We only consider onestep rewriting strategies, which selec...
On Higher Order Recursive Program Schemes
 In: Proc. of the 19 th International Colloquium on Trees in Algebra and Programming, CAAP'94
"... . We define Higher Order Recursive Program Schemes (HRPSs) by allowing metasubstitutions (as in the calculus) in righthand sides of function and quantifier definitions. A study of several kinds of similarity of redexes makes it possible to lift properties of (first order) Recursive Program Schemes ..."
Abstract

Cited by 20 (16 self)
 Add to MetaCart
. We define Higher Order Recursive Program Schemes (HRPSs) by allowing metasubstitutions (as in the calculus) in righthand sides of function and quantifier definitions. A study of several kinds of similarity of redexes makes it possible to lift properties of (first order) Recursive Program Schemes to the higher order case. The main result is the decidability of weak normalization in HRPSs, which immediately implies that HRPSs do not have full computational power. We analyze the structural properties of HRPSs and introduce several kinds of persistent expression reduction systems (PERSs) that enjoy similar properties. Finally, we design an optimal evaluation procedure for PERSs. 1 Introduction Higher Order Recursive Program Schemes (HRPSs) are recursive definitions of functions, predicates, and quantifiers, considered as rewriting systems. Similar definitions are used when one extends a theory by introducing new symbols [16]. 9aA , (øa(A)=a)A and 9!aA , 9aA 8a8b(A (b=a)A ) a = b) a...
Two Techniques for Compiling Lazy Pattern Matching
, 1994
"... In ML style pattern matching, pattern size is not constrained and ambiguous patterns are allowed. This generality leads to a clear and concise programming style but is challenging in the context of lazy evaluation. A first challenge concerns language designers: in lazy ML, the evaluation order of ex ..."
Abstract

Cited by 10 (1 self)
 Add to MetaCart
In ML style pattern matching, pattern size is not constrained and ambiguous patterns are allowed. This generality leads to a clear and concise programming style but is challenging in the context of lazy evaluation. A first challenge concerns language designers: in lazy ML, the evaluation order of expressions follows actual data dependencies. That is, only the computations that are needed to produce the final result are performed. Once given a proper (that is, nonambiguous) semantics, pattern matching should be compiled in a similar spirit: any value matching a given pattern should be recognized by performing only the minimal number of elementary tests needed to do so. This challenge was first met by A. Laville. A second challenge concerns compiler designers. As it stands, Laville's compilation algorithm cannot be incorporated in an actual lazy ML compiler for efficiency and completeness reasons. As a matter of fact, Laville's original algorithm did not fully treat the case of intege...