Results 1 
6 of
6
The computational Complexity of Knot and Link Problems
 J. ACM
, 1999
"... We consider the problem of deciding whether a polygonal knot in 3dimensional Euclidean space is unknotted, capable of being continuously deformed without selfintersection so that it lies in a plane. We show that this problem, unknotting problem is in NP. We also consider the problem, unknotting pr ..."
Abstract

Cited by 55 (6 self)
 Add to MetaCart
We consider the problem of deciding whether a polygonal knot in 3dimensional Euclidean space is unknotted, capable of being continuously deformed without selfintersection so that it lies in a plane. We show that this problem, unknotting problem is in NP. We also consider the problem, unknotting problem of determining whether two or more such polygons can be split, or continuously deformed without selfintersection so that they occupy both sides of a plane without intersecting it. We show that it also is in NP. Finally, we show that the problem of determining the genus of a polygonal knot (a generalization of the problem of determining whether it is unknotted) is in PSPACE. We also give exponential worstcase running time bounds for deterministic algorithms to solve each of these problems. These algorithms are based on the use of normal surfaces and decision procedures due to W. Haken, with recent extensions by W. Jaco and J. L. Tollefson.
On Triangulating ThreeDimensional Polygons
 COMPUTATIONAL GEOMETRY: THEORY AND APPLICATIONS
, 1996
"... A threedimensional polygon is triangulable if it has a nonselfintersecting triangulation which defines a simplyconnected 2manifold. We show that the problem of deciding whether a 3dimensional polygon is triangulable is NPComplete. We then establish some necessary conditions and some sufficie ..."
Abstract

Cited by 29 (3 self)
 Add to MetaCart
A threedimensional polygon is triangulable if it has a nonselfintersecting triangulation which defines a simplyconnected 2manifold. We show that the problem of deciding whether a 3dimensional polygon is triangulable is NPComplete. We then establish some necessary conditions and some sufficient conditions for a polygon to be triangulable, providing special cases when the decision problem may be answered in polynomial time.
Interactive Topological Drawing
, 1998
"... The research presented here examines topological drawing, a new mode of constructing and interacting with mathematical objects in threedimensional space. In topological drawing, issues such as adjacency and connectedness, which are topological in nature, take precedence over purely geometric issues ..."
Abstract

Cited by 18 (1 self)
 Add to MetaCart
The research presented here examines topological drawing, a new mode of constructing and interacting with mathematical objects in threedimensional space. In topological drawing, issues such as adjacency and connectedness, which are topological in nature, take precedence over purely geometric issues. Because the domain of application is mathematics, topological drawing is also concerned with the correct representation and display of these objects on a computer. By correctness we mean that the essential topological features of objects are maintained during interaction. We have chosen to limit the scope of topological drawing to knot theory, a domain that consists essentially of one class of object (embedded circles in threedimensional space) yet is rich enough to contain a wide variety of difficult problems of research interest. In knot theory, two embedded circles (knots) are considered equivalent if one may be smoothly deformed into the other without any cuts or selfintersections. This notion of equivalence may be thought of as the heart of knot theory. We present methods for the computer construction and interactive manipulation of a
The size of spanning disks for polygonal curves
 Discrete Comput. Geom
"... Abstract. For each integer n ≥ 0, there is a closed, unknotted, polygonal curve Kn in R 3 having less than 10n + 9 edges, with the property that any PiecewiseLinear triangulated disk spanning the curve contains at least 2 n−1 triangles. 1. Introduction. Let K be a closed polygonal curve in R3 consi ..."
Abstract

Cited by 9 (1 self)
 Add to MetaCart
Abstract. For each integer n ≥ 0, there is a closed, unknotted, polygonal curve Kn in R 3 having less than 10n + 9 edges, with the property that any PiecewiseLinear triangulated disk spanning the curve contains at least 2 n−1 triangles. 1. Introduction. Let K be a closed polygonal curve in R3 consisting of n line segments. Assume that K is unknotted, so that it is the boundary of an embedded disk in R3. This paper considers the question: How many triangles are needed to triangulate a PiecewiseLinear (PL) spanning disk of K? The main result, Theorem 1 below,
The size of spanning disks for polygonal knots
, 1999
"... For each integer n ≥ 1 we construct a closed unknotted Piecewise Linear curve Kn in R 3 having less than 11n edges with the property that any Piecewise Linear triangluated disk spanning the curve contains at least 2 n−1 triangles. 1 Introduction. We show the existence of a sequence of unknotted simp ..."
Abstract

Cited by 6 (1 self)
 Add to MetaCart
For each integer n ≥ 1 we construct a closed unknotted Piecewise Linear curve Kn in R 3 having less than 11n edges with the property that any Piecewise Linear triangluated disk spanning the curve contains at least 2 n−1 triangles. 1 Introduction. We show the existence of a sequence of unknotted simple closed curves Kn in R 3 having the following properties: • The curve Kn is a polygon with at most 11n edges. • Any Piecewise Linear (PL) embedding of a triangulated disk into R 3 with