Results 1  10
of
66
Termination of Term Rewriting Using Dependency Pairs
 Comput. Sci
, 2000
"... We present techniques to prove termination and innermost termination of term rewriting systems automatically. In contrast to previous approaches, we do not compare left and righthand sides of rewrite rules, but introduce the notion of dependency pairs to compare lefthand sides with special subter ..."
Abstract

Cited by 208 (46 self)
 Add to MetaCart
We present techniques to prove termination and innermost termination of term rewriting systems automatically. In contrast to previous approaches, we do not compare left and righthand sides of rewrite rules, but introduce the notion of dependency pairs to compare lefthand sides with special subterms of the righthand sides. This results in a technique which allows to apply existing methods for automated termination proofs to term rewriting systems where they failed up to now. In particular, there are numerous term rewriting systems where a direct termination proof with simplification orderings is not possible, but in combination with our technique, wellknown simplification orderings (such as the recursive path ordering, polynomial orderings, or the KnuthBendix ordering) can now be used to prove termination automatically. Unlike previous methods, our technique for proving innermost termination automatically can also be applied to prove innermost termination of term rewriting systems that are not terminating. Moreover, as innermost termination implies termination for certain classes of term rewriting systems, this technique can also be used for termination proofs of such systems.
Termination of Term Rewriting By Semantic Labelling
 FUNDAMENTA INFORMATICAE
, 1995
"... A new kind of transformation of term rewriting systems (TRS) is proposed, depending on a choice for a model for the TRS. The labelled TRS is obtained from the original one by labelling operation symbols, possibly creating extra copies of some rules. This construction has the remarkable property t ..."
Abstract

Cited by 86 (14 self)
 Add to MetaCart
A new kind of transformation of term rewriting systems (TRS) is proposed, depending on a choice for a model for the TRS. The labelled TRS is obtained from the original one by labelling operation symbols, possibly creating extra copies of some rules. This construction has the remarkable property that the labelled TRS is terminating if and only if the original TRS is terminating. Although the labelled version has more operation symbols and may have more rules (sometimes infinitely many), termination is often easier to prove for the labelled TRS than for the original one. This provides a new technique for proving termination, making classical techniques like path orders and polynomial interpretations applicable even for nonsimplifying TRS's. The requirement of having a model can slightly be weakened, yielding a remarkably simple termination proof of the system SUBST of [11] describing explicit substitution in λcalculus.
A lambdacalculus à la de Bruijn with explicit substitutions
, 1995
"... The aim of this paper is to present the scalculus which is a very simple calculus with explicit substitutions and to prove its confluence on closed terms and the preservation of strong normalisation of terms. We shall prove strong normalisation of the corresponding calculus of substitution by tra ..."
Abstract

Cited by 78 (26 self)
 Add to MetaCart
The aim of this paper is to present the scalculus which is a very simple calculus with explicit substitutions and to prove its confluence on closed terms and the preservation of strong normalisation of terms. We shall prove strong normalisation of the corresponding calculus of substitution by translating it into the oecalculus [ACCL91], and therefore the relation between both calculi will be made explicit. The confluence of the scalculus is obtained by the "interpretation method" ([Har89], [CHL92]). The proof of the preservation of normalisation follows the lines of an analogous result for the AEcalculus (cf. [BBLRD95]). The relation between s and AE is also studied.
Argument Filtering Transformation
 In Proc. 1st PPDP, LNCS 1702
, 1999
"... To simplify the task of proving termination of term rewriting systems, several elimination methods, such as the dummy elimination, the distribution elimination, the general dummy elimination and the improved general dummy elimination, have been proposed. In this paper, we show that the argument lter ..."
Abstract

Cited by 39 (2 self)
 Add to MetaCart
To simplify the task of proving termination of term rewriting systems, several elimination methods, such as the dummy elimination, the distribution elimination, the general dummy elimination and the improved general dummy elimination, have been proposed. In this paper, we show that the argument ltering method combining with the dependency pair technique is essential in all the above elimination methods. We present remarkable simple proofs for the soundness of these elimination methods based on this observation. Moreover, we propose a new elimination method, called the argument ltering transformation, which is not only more powerful than all the other elimination methods but also especially useful to make clear the essential relation hidden behind these methods.
Automatically Proving Termination Where Simplification Orderings Fail
, 1997
"... To prove termination of term rewriting systems (TRSs), several methods have been developed to synthesize suitable wellfounded orderings automatically. However, virtually all orderings that are amenable to automation are socalled simplification orderings. Unfortunately, there exist numerous interes ..."
Abstract

Cited by 32 (9 self)
 Add to MetaCart
To prove termination of term rewriting systems (TRSs), several methods have been developed to synthesize suitable wellfounded orderings automatically. However, virtually all orderings that are amenable to automation are socalled simplification orderings. Unfortunately, there exist numerous interesting and relevant TRSs that cannot be oriented by orderings of this restricted class and therefore their termination cannot be proved automatically with the existing techniques. In this paper we present a new automatic approach which allows to apply the standard techniques for automated termination proofs to those TRSs where these techniques failed up to now. For that purpose we have developed a procedure which, given a TRS, generates a set of inequalities (constraints) automatically. If there exists a wellfounded ordering satisfying these constraints, then the TRS is terminating. It turns out that for many TRSs where a direct application of standard techniques fails, these standard techniq...
Complete Monotonic Semantic Path Orderings
 In Proc. 17th CADE, LNAI 1831
, 2000
"... Although theoretically it is very powerful, the semantic path ordering (SPO) is not so useful in practice, since its monotonicity has to be proved by hand for each concrete term rewrite system (TRS). In this paper we present a monotonic variation of SPO, called MSPO. It characterizes termination ..."
Abstract

Cited by 31 (8 self)
 Add to MetaCart
Although theoretically it is very powerful, the semantic path ordering (SPO) is not so useful in practice, since its monotonicity has to be proved by hand for each concrete term rewrite system (TRS). In this paper we present a monotonic variation of SPO, called MSPO. It characterizes termination, i.e., a TRS is terminating if and only if its rules are included in some MSPO. Hence MSPO is a complete termination method. On the practical side, it can be easily automated using as ingredients standard interpretations and generalpurpose orderings like RPO. This is shown to be a sufficiently powerful way to handle several nontrivial examples and to obtain methods like dummy elimination or dependency pairs as particular cases. Finally, we obtain some positive modularity results for termination based on MSPO. 1 Introduction Rewrite systems are sets of rules (directed equations) used to compute by repeatedly replacing parts of a given formula with equal ones until the simplest po...
Proving Innermost Normalisation Automatically
, 1997
"... We present a technique to prove innermost normalisation of term rewriting systems (TRSs) automatically. In contrast to previous methods, our technique is able to prove innermost normalisation of TRSs that are not terminating. Our technique can also be used for termination proofs of all TRSs where in ..."
Abstract

Cited by 28 (11 self)
 Add to MetaCart
We present a technique to prove innermost normalisation of term rewriting systems (TRSs) automatically. In contrast to previous methods, our technique is able to prove innermost normalisation of TRSs that are not terminating. Our technique can also be used for termination proofs of all TRSs where innermost normalisation implies termination, such as nonoverlapping TRSs or locally confluent overlay systems. In this way, termination of many (also nonsimply terminating) TRSs can be verified automatically. 1. Introduction Innermost rewriting, i.e. rewriting where only innermost redexes are contracted, can be used to model callbyvalue computation semantics. For that reason, there has been an increasing interest in innermost normalisation (also called innermost termination), i.e. in proving that the length of every innermost reduction is finite. Techniques for proving innermost normalisation can for example be utilized for termination proofs of functional programs (modelled by TRSs) or o...
lambdacalculi with explicit substitutions and composition which preserve beta strong normalization (Extended Abstract)
, 1996
"... ) Maria C. F. Ferreira 1 and Delia Kesner 2 and Laurence Puel 2 1 Dep. de Inform'atica, Fac. de Ciencias e Tecnologia, Univ. Nova de Lisboa, Quinta da Torre, 2825 Monte de Caparica, Portugal, cf@fct.unl.pt. 2 CNRS & Lab. de Rech. en Informatique, Bat 490, Univ. de ParisSud, 91405 Orsay Cede ..."
Abstract

Cited by 27 (3 self)
 Add to MetaCart
) Maria C. F. Ferreira 1 and Delia Kesner 2 and Laurence Puel 2 1 Dep. de Inform'atica, Fac. de Ciencias e Tecnologia, Univ. Nova de Lisboa, Quinta da Torre, 2825 Monte de Caparica, Portugal, cf@fct.unl.pt. 2 CNRS & Lab. de Rech. en Informatique, Bat 490, Univ. de ParisSud, 91405 Orsay Cedex, France, fkesner,puelg@lri.fr. Abstract. We study preservation of fistrong normalization by d and dn , two confluent calculi with explicit substitutions defined in [10]; the particularity of these calculi is that both have a composition operator for substitutions. We develop an abstract simulation technique allowing to reduce preservation of fistrong normalization of one calculus to that of another one, and apply said technique to reduce preservation of fistrong normalization of d and dn to that of f , another calculus having no composition operator. Then, preservation of fistrong normalization of f is shown using the same technique as in [2]. As a consequence, d and dn become the fir...
Dummy Elimination: making termination easier
, 1995
"... Proving termination of term rewriting systems is a difficult task. Here we investigate a technique whose goal is to simplify that task. The technique consist of a transformation of the term rewriting system which eliminates function symbols considered "useless" and simplifies the rewrite rules. We s ..."
Abstract

Cited by 26 (10 self)
 Add to MetaCart
Proving termination of term rewriting systems is a difficult task. Here we investigate a technique whose goal is to simplify that task. The technique consist of a transformation of the term rewriting system which eliminates function symbols considered "useless" and simplifies the rewrite rules. We show that the transformation is sound, i. e., termination of the original system can be inferred from termination of the transformed one. For proving this result we use a new notion of lifting of orders that turns out to be a generalization of the multiset construction.